57,028 research outputs found

    An Approach to Relate Viewpoints and Modeling Languages

    Get PDF
    The architectural design of distributed enterprise applications from the viewpoints of different stakeholders has been proposed for some time, for example, as part of RM-ODP and IEEE 1471, and seems now-a-days to gain acceptance in practice. However, much work remains to be done on the relationships between different viewpoints. Failing to relate viewpoints may lead to a collection of viewpoint models that is inconsistent, and may therefore lead to an incorrect implementation. This paper defines an approach that helps designers to relate different viewpoints to each other. Thereby, it helps to enforce the consistency of the overall design. The results of this paper are expected to be particularly interesting for Model Driven Architecture (MDA) projects, since the proposed models can be used for the explicit definition of the models and relationships between models in an MDA trajectory

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    Goal sketching with activity diagrams

    Get PDF
    Goal orientation is acknowledged as an important paradigm in requirements engineering. The structure of a goal-responsibility model provides opportunities for appraising the intention of a development. Creating a suitable model under agile constraints (time, incompleteness and catching up after an initial burst of creativity) can be challenging. Here we propose a marriage of UML activity diagrams with goal sketching in order to facilitate the production of goal responsibility models under these constraints

    Extension to UML-B Notation and Toolset

    No full text
    The UML-B notation has been created as an attempt to combine the success and ease of use of UML, with the verification and rigorous development capabilities of formal methods. However, the notation currently only supports a basic diagram set. To address this we have, in this project, designed and implemented a set of extensions to the UML-B notation that provide a much fuller software engineering experience, critically making UML-B more appealing to industry partners. These extensions comprise five new diagram types, which are aimed at supplying a broader range of design capabilities, such as conceptual Use-Case design and future integration with the ProB animator tool

    EU accession and Poland's external trade policy

    Get PDF
    No description supplie

    The State Of Play: A Notional Machine for Learning Programming

    Get PDF
    Comprehension of programming and programs is known to be a difficult task for many beginning students, with many computing courses showing significant drop out and failure rates. In this paper, we present a new notional machine de- sign and implementation to help with understanding of pro- gramming and its dynamics for beginning learners. The no- tional machine offers an abstraction of the physical machine designed for comprehension and learning purposes. We in- troduce the notional machine and a graphical notation for its representation. We also present Novis, an implementation of a dynamic real-time visualiser of this notional machine, integrated into BlueJ
    corecore