19,778 research outputs found

    IMPrECISE: Good-is-good-enough data integration

    Get PDF
    IMPrECISE is an XQuery module that adds probabilistic XML functionality to an existing XML DBMS, in our case MonetDB/XQuery. We demonstrate probabilistic XML and data integration functionality of IMPrECISE. The prototype is configurable with domain knowledge such that the amount of uncertainty arising during data integration is reduced to an acceptable level, thus obtaining a "good is good enough" data integration with minimal human effort

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Use-cases on evolution

    Get PDF
    This report presents a set of use cases for evolution and reactivity for data in the Web and Semantic Web. This set is organized around three different case study scenarios, each of them is related to one of the three different areas of application within Rewerse. Namely, the scenarios are: “The Rewerse Information System and Portal”, closely related to the work of A3 – Personalised Information Systems; “Organizing Travels”, that may be related to the work of A1 – Events, Time, and Locations; “Updates and evolution in bioinformatics data sources” related to the work of A2 – Towards a Bioinformatics Web

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Planetary Science Virtual Observatory architecture

    Full text link
    In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators

    Using XML and XSLT for flexible elicitation of mental-health risk knowledge

    Get PDF
    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Methods and evolving results: Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Conclusions: Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge

    Mediated data integration and transformation for web service-based software architectures

    Get PDF
    Service-oriented architecture using XML-based web services has been widely accepted by many organisations as the standard infrastructure to integrate heterogeneous and autonomous data sources. As a result, many Web service providers are built up on top of the data sources to share the data by supporting provided and required interfaces and methods of data access in a unified manner. In the context of data integration, problems arise when Web services are assembled to deliver an integrated view of data, adaptable to the specific needs of individual clients and providers. Traditional approaches of data integration and transformation are not suitable to automate the construction of connectors dedicated to connect selected Web services to render integrated and tailored views of data. We propose a declarative approach that addresses the oftenneglected data integration and adaptivity aspects of serviceoriented architecture

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general
    • 

    corecore