1,001 research outputs found

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Convex Calibration Dimension for Multiclass Loss Matrices

    Full text link
    We study consistency properties of surrogate loss functions for general multiclass learning problems, defined by a general multiclass loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient conditions for a surrogate loss to be calibrated with respect to a loss matrix in this setting. We then introduce the notion of convex calibration dimension of a multiclass loss matrix, which measures the smallest `size' of a prediction space in which it is possible to design a convex surrogate that is calibrated with respect to the loss matrix. We derive both upper and lower bounds on this quantity, and use these results to analyze various loss matrices. In particular, we apply our framework to study various subset ranking losses, and use the convex calibration dimension as a tool to show both the existence and non-existence of various types of convex calibrated surrogates for these losses. Our results strengthen recent results of Duchi et al. (2010) and Calauzenes et al. (2012) on the non-existence of certain types of convex calibrated surrogates in subset ranking. We anticipate the convex calibration dimension may prove to be a useful tool in the study and design of surrogate losses for general multiclass learning problems.Comment: Accepted to JMLR, pending editin

    Least Ambiguous Set-Valued Classifiers with Bounded Error Levels

    Full text link
    In most classification tasks there are observations that are ambiguous and therefore difficult to correctly label. Set-valued classifiers output sets of plausible labels rather than a single label, thereby giving a more appropriate and informative treatment to the labeling of ambiguous instances. We introduce a framework for multiclass set-valued classification, where the classifiers guarantee user-defined levels of coverage or confidence (the probability that the true label is contained in the set) while minimizing the ambiguity (the expected size of the output). We first derive oracle classifiers assuming the true distribution to be known. We show that the oracle classifiers are obtained from level sets of the functions that define the conditional probability of each class. Then we develop estimators with good asymptotic and finite sample properties. The proposed estimators build on existing single-label classifiers. The optimal classifier can sometimes output the empty set, but we provide two solutions to fix this issue that are suitable for various practical needs.Comment: Final version to be published in the Journal of the American Statistical Association at https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1395341?journalCode=uasa2
    corecore