644 research outputs found

    A Systematic Aspect-Oriented Refactoring and Testing Strategy, and its Application to JHotDraw

    Full text link
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migrations.Comment: 25 page

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Testing and test-driven development of conceptual schemas

    Get PDF
    The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of its implementation. However, the quality of an IS can be largely determined in the first stages of its development. Several studies reveal that more than half the errors that occur during systems development are requirements errors. A requirements error is defined as a mismatch between requirements specification and stakeholders¿ needs and expectations. Conceptual modeling is an essential activity in requirements engineering aimed at developing the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS needs to know in order to perform its functions. A conceptual schema specification has semantic quality when it is valid and complete. Validity means that the schema is correct (the knowledge it defines is true for the domain) and relevant (the knowledge it defines is necessary for the system). Completeness means that the conceptual schema includes all relevant knowledge. The validation of a conceptual schema pursues the detection of requirements errors in order to improve its semantic quality. Conceptual schema validation is still a critical challenge in requirements engineering. In this work we contribute to this challenge, taking into account that, since conceptual schemas of IS can be specified in executable artifacts, they can be tested. In this context, the main contributions of this Thesis are (1) an approach to test conceptual schemas of information systems, and (2) a novel method for the incremental development of conceptual schemas supported by continuous test-driven validation. As far as we know, this is the first work that proposes and implements an environment for automated testing of UML/OCL conceptual schemas, and the first work that explores the use of test-driven approaches in conceptual modeling. The testing of conceptual schemas may be an important and practical means for their validation. It allows checking correctness and completeness according to stakeholders¿ needs and expectations. Moreover, in conjunction with the automatic check of basic test adequacy criteria, we can also analyze the relevance of the elements defined in the schema. The testing environment we propose requires a specialized language for writing tests of conceptual schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used to specify automated tests of executable schemas specified in UML/OCL. We also describe a prototype implementation of a test processor that makes feasible the approach in practice. The conceptual schema testing approach supports test-last validation of conceptual schemas, but it also makes sense to test incomplete conceptual schemas while they are developed. This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our second main contribution. TDCM is a novel conceptual modeling method based on the main principles of Test-Driven Development (TDD), an extreme programming method in which a software system is developed in short iterations driven by tests. We have applied the method in several case studies, in the context of Design Research, which is the general research framework we adopted. Finally, we also describe an integration approach of TDCM into a broad set of software development methodologies, including the Unified Process development methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-oriented requirements engineering methods.Els enfocaments per assegurar la qualitat deis sistemes d'informació s'han basal tradicional m en! en l'avaluació de la seva implementació. No obstan! aix6, la qualitat d'un sis tema d'informació pot ser ampliament determinada en les primeres fases del seu desenvolupament. Diversos estudis indiquen que més de la meitat deis errors de software són errors de requisits . Un error de requisit es defineix com una desalineació entre l'especificació deis requisits i les necessitats i expectatives de les parts im plicades (stakeholders ). La modelització conceptual és una activitat essencial en l'enginyeria de requisits , l'objectiu de la qual és desenvolupar !'esquema conceptual d'un sistema d'informació. L'esquema conceptual és el coneixement general que un sistema d'informació requereix per tal de desenvolupar les seves funcions . Un esquema conceptual té qualitat semantica quan és va lid i complet. La valides a implica que !'esquema sigui correcte (el coneixement definit és cert peral domini) i rellevant (el coneixement definit és necessari peral sistema). La completes a significa que !'esquema conceptual inclou tot el coneixement rellevant. La validació de !'esquema conceptual té coma objectiu la detecció d'errors de requisits per tal de millorar la qualitat semantica. La validació d'esquemes conceptuals és un repte crític en l'enginyeria de requisits . Aquesta te si contribueix a aquest repte i es basa en el fet que els es quemes conceptuals de sistemes d'informació poden ser especificats en artefactes executables i, per tant, poden ser provats. Les principals contribucions de la te si són (1) un enfocament pera les pro ves d'esquemes conceptuals de sistemes d'informació, i (2) una metodología innovadora pel desenvolupament incremental d'esquemes conceptuals assistit per una validació continuada basada en proves . Les pro ves d'esquemes conceptuals poden ser una im portant i practica técnica pera la se va validació, jaque permeten provar la correctesa i la completesa d'acord ambles necessitats i expectatives de les parts interessades. En conjunció amb la comprovació d'un conjunt basic de criteris d'adequació de les proves, també podem analitzar la rellevancia deis elements definits a !'esquema. L'entorn de test proposat inclou un llenguatge especialitzat per escriure proves automatitzades d'esquemes conceptuals, anomenat Conceptual Schema Testing Language (CSTL). També hem descrit i implementa! a un prototip de processador de tes tos que fa possible l'aplicació de l'enfocament proposat a la practica. D'acord amb l'estat de l'art en validació d'esquemes conceptuals , aquest és el primer treball que proposa i implementa un entorn pel testing automatitzat d'esquemes conceptuals definits en UML!OCL. L'enfocament de proves d'esquemes conceptuals permet dura terme la validació d'esquemes existents , pero també té sentit provar es quemes conceptuals incomplets m entre estant sent desenvolupats. Aquest fet és la base de la metodología Test-Driven Conceptual Modeling (TDCM), que és la segona contribució principal. El TDCM és una metodología de modelització conceptual basada en principis basics del Test-Driven Development (TDD), un métode de programació en el qual un sistema software és desenvolupat en petites iteracions guiades per proves. També hem aplicat el métode en diversos casos d'estudi en el context de la metodología de recerca Design Science Research. Finalment, hem proposat enfocaments d'integració del TDCM en diverses metodologies de desenvolupament de software

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    A systematic aspect-oriented refactoring and testing strategy, and its application to JHotDraw.

    Get PDF
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migration

    Traceability of Requirements and Software Architecture for Change Management

    Get PDF
    At the present day, software systems get more and more complex. The requirements of software systems change continuously and new requirements emerge frequently. New and/or modified requirements are integrated with the existing ones, and adaptations to the architecture and source code of the system are made. The process of integration of the new/modified requirements and adaptations to the software system is called change management. The size and complexity of software systems make change management costly and time consuming. To reduce the cost of changes, it is important to apply change management as early as possible in the software development cycle. Requirements traceability is considered crucial in change management for establishing and maintaining consistency between software development artifacts. It is the ability to link requirements back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test cases. When changes for the requirements of the software system are proposed, the impact of these changes on other requirements, design elements and source code should be traced in order to determine parts of the software system to be changed. Determining the impact of changes on the parts of development artifacts is called change impact analysis. Change impact analysis is applicable to many development artifacts like requirements documents, detailed design, source code and test cases. Our focus is change impact analysis in requirements and software architecture. The need for change impact analysis is observed in both requirements and software architecture. When a change is introduced to a requirement, the requirements engineer needs to find out if any other requirement related to the changed requirement is impacted. After determining the impacted requirements, the software architect needs to identify the impacted architectural elements by tracing the changed requirements to software architecture. It is hard, expensive and error prone to manually trace impacted requirements and architectural elements from the changed requirements. There are tools and approaches that automate change impact analysis like IBM Rational RequisitePro and DOORS. In most of these tools, traces are just simple relations and their semantics is not considered. Due to the lack of semantics of traces in these tools, all requirements and architectural elements directly or indirectly traced from the changed requirement are candidate impacted. The requirements engineer has to inspect all these candidate impacted requirements and architectural elements to identify changes if there are any. In this thesis we address the following problems which arise in performing change impact analysis for requirements and software architecture. Explosion of impacts in requirements after a change in requirements. In practice, requirements documents are often textual artifacts with implicit structure. Most of the relations among requirements are not given explicitly. There is a lack of precise definition of relations among requirements in most tools and approaches. Due to the lack of semantics of requirements relations, change impact analysis may produce high number of false positive and false negative impacted requirements. A requirements engineer may have to analyze all requirements in the requirements document for a single change. This may result in neglecting the actual impact of a change. Manual, expensive and error prone trace establishment. Considerable research has been devoted to relating requirements and design artifacts with source code. Less attention has been paid to relating Requirements (R) with Architecture (A) by using well-defined semantics of traces. Designing architecture based on requirements is a problem solving process that relies on human experience and creativity, and is mainly manual. The software architect may need to manually assign traces between R&A. Manual trace assignment is time-consuming, expensive and error prone. The assigned traces might be incomplete and invalid. Explosion of impacts in software architecture after a change in requirements. Due to the lack of semantics of traces between R&A, change impact analysis may produce high number of false positive and false negative impacted architectural elements. A software architect may have to analyze all architectural elements in the architecture for a single requirements change. In this thesis we propose an approach that reduces the explosion of impacts in R&A. The approach employs semantic information of traces and is supported by tools. We consider that every relation between software development artifacts or between elements in these artifacts can play the role of a trace for a certain traceability purpose like change impact analysis. We choose Model Driven Engineering (MDE) as a solution platform for our approach. MDE provides a uniform treatment of software artifacts (e.g. requirements documents, software design and test documents) as models. It also enables using different formalisms to reason about development artifacts described as models. To give an explicit structure to requirements documents and treat requirements, architecture and traces in a uniform way, we use metamodels and models with formally defined semantics. The thesis provides the following contributions: A modeling language for definition of requirements models with formal semantics. The language is defined according to the MDE principles by defining a metamodel. It is based on a survey about the most commonly found requirements types and relation types. With this language, the requirements engineer can explicitly specify the requirements and the relations among them. The semantics of these entities is given in First Order Logic (FOL) and allows two activities. First, new relations among requirements can be inferred from the initial set of relations. Second, requirements models can be automatically checked for consistency of the relations. Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed to support both activities. The defined semantics is used in a technique for change impact analysis in requirements models. A change impact analysis technique for requirements using semantics of requirements relations and requirements change types. The technique aims at solving the problem of explosion of impacts in requirements when semantics of requirements relations is missing. The technique uses formal semantics of requirements relations and requirements change types. A classification of requirements changes based on the structure of a textual requirement is given and formalized. The semantics of requirements change types is based on FOL. We support three activities for impact analysis. First, the requirements engineer proposes changes according to the change classification before implementing the actual changes. Second, the requirements engineer indentifies the propagation of the changes to related requirements. The change alternatives in the propagation are determined based on the semantics of change types and requirements relations. Third, possible contradicting changes are identified. We extend TRIC with a support for these activities. The tool automatically determines the change propagation paths, checks the consistency of the changes, and suggests alternatives for implementing the change. A technique that provides trace establishment between R&A by using architecture verification and semantics of traces. It is hard, expensive and error prone to manually establish traces between R&A. We present an approach that provides trace establishment by using architecture verification together with semantics of requirements relations and traces. We use a trace metamodel with commonly used trace types. The semantics of traces is formalized in FOL. Software architectures are expressed in the Architecture Analysis and Design Language (AADL). AADL is provided with a formal semantics expressed in Maude. The Maude tool set allows simulation and verification of architectures. The first way to establish traces is to use architecture verification techniques. A given requirement is reformulated as a property in terms of the architecture. The architecture is executed and a state space is produced. This execution simulates the behavior of the system on the architectural level. The property derived from the requirement is checked by the Maude model checker. Traces are generated between the requirement and the architectural components used in the verification of the property. The second way to establish traces is to use the requirements relations together with the semantics of traces. Requirements relations are reflected in the connections among the traced architectural elements based on the semantics of traces. Therefore, new traces are inferred from existing traces by using requirements relations. We use semantics of requirements relations and traces to both generate/validate traces and generate/validate requirements relations. There is a tool support for our approach. The tool provides the following: (1) generation/validation of traces by using requirements relations and/or verification of architecture, (2) generation/validation of requirements relations by using traces. A change impact analysis technique for software architecture using architecture verification and semantics of traces between R&A. The software architect needs to identify the impacted architectural elements after requirements change. We present a change impact analysis technique for software architecture using architecture verification and semantics of traces. The technique is semi-automatic and requires participation of the software architect. Our technique has two parts. The first part is to identify the architectural elements that implement the system properties to which proposed requirements changes are introduced. By having the formal semantics of requirements relations and traces, we identify which parts of software architecture are impacted by a proposed change in requirements. We have extended TRIC for determining candidate impacted architectural elements. The second part of our technique is to propose possible changes for software architecture when the software architecture does not satisfy the new and/or changed requirements. The technique is based on architecture verification. The output of verification is a counter example if the requirements are not satisfied. The counter example is used with a classification of architectural changes in order to propose changes in the software architecture. These changes produce a new version of the architecture that possibly satisfies the new or the changed requirements
    corecore