1,013 research outputs found

    Consistency-based characterization for IC Trojan detection

    Full text link

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    DISTROY: Detecting Integrated Circuit Trojans with Compressive Measurements

    Get PDF
    Detecting Trojans in an integrated circuit (IC) is an important but hard problem. A Trojan is malicious hardware it can be extremely small in size and dormant until triggered by some unknown circuit state. To allow wake-up, a Trojan could draw a minimal amount of power, for example, to run a clock or a state machine, or to monitor a triggering event. We introduce DISTROY (Discover Trojan), a new approach that can effciently and reliably detect extremely small background power leakage that a Trojan creates and as a result, we can detect the Trojan. We formulate our method based on compressive sensing, a recent advance in signal processing, which can recover a signal using the number of measurements approximately proportional to its sparsity rather than size. We argue that circuit states in which the Trojan background power consumption stands out are rare, and thus sparse, so that we can apply compressive sensing. We describe how this is done in DISTROY so as to afford suffcient measurement statistics to detect the presence of Trojans. Finally, we present our initial simulation results that validate DISTROY and discuss the impact of our work in the field of hardware security.Engineering and Applied Science

    A Comprehensive Study of the Hardware Trojan and Side-Channel Attacks in Three-Dimensional (3D) Integrated Circuits (ICs)

    Get PDF
    Three-dimensional (3D) integration is emerging as promising techniques for high-performance and low-power integrated circuit (IC, a.k.a. chip) design. As 3D chips require more manufacturing phases than conventional planar ICs, more fabrication foundries are involved in the supply chain of 3D ICs. Due to the globalized semiconductor business model, the extended IC supply chain could incur more security challenges on maintaining the integrity, confidentiality, and reliability of integrated circuits and systems. In this work, we analyze the potential security threats induced by the integration techniques for 3D ICs and propose effective attack detection and mitigation methods. More specifically, we first propose a comprehensive characterization for 3D hardware Trojans in the 3D stacking structure. Practical experiment based quantitative analyses have been performed to assess the impact of 3D Trojans on computing systems. Our analysis shows that advanced attackers could exploit the limitation of the most recent 3D IC testing standard IEEE Standard 1838 to bypass the tier-level testing and successfully implement a powerful TSV-Trojan in 3D chips. We propose an enhancement for IEEE Standard 1838 to facilitate the Trojan detection on two neighboring tiers simultaneously. Next, we develop two 3D Trojan detection methods. The proposed frequency-based Trojan-activity identification (FTAI) method can differentiate the frequency changes induced by Trojans from those caused by process variation noise, outperforming the existing time-domain Trojan detection approaches by 38% in Trojan detection rate. Our invariance checking based Trojan detection method leverages the invariance among the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier 3D hardware Trojans, achieving a Trojan detection rate of over 94%. Furthermore, this work investigates another type of common security threat, side-channel attacks. We first propose to group the supply voltages of different 3D tiers temporally to drive the crypto unit implemented in 3D ICs such that the noise in power distribution network (PDN) can be induced to obfuscate the original power traces and thus mitigates correlation power analysis (CPA) attacks. Furthermore, we study the side-channel attack on the logic locking mechanism in monolithic 3D ICs and propose a logic-cone conjunction (LCC) method and a configuration guideline for the transistor-level logic locking to strengthen its resilience against CPA attacks

    A Unified Framework for Multimodal Submodular Integrated Circuits Trojan Detection

    Full text link

    Structural Checking Tool Restructure and Matching Improvements

    Get PDF
    With the rising complexity and size of hardware designs, saving development time and cost by employing third-party intellectual property (IP) into various first-party designs has become a necessity. However, using third-party IPs introduces the risk of adding malicious behavior to the design, including hardware Trojans. Different from software Trojan detection, the detection of hardware Trojans in an efficient and cost-effective manner is an ongoing area of study and has significant complexities depending on the development stage where Trojan detection is leveraged. Therefore, this thesis research proposes improvements to various components of the soft IP analysis methodology utilized by the Structural Checking Tool. The Structural Checking Tool analyzes the register-transfer level (RTL) code of IPs to determine their functionalities and to detect and identify hardware Trojans inserted. The Structural Checking process entails parsing a design to yield a structural representation and assigning assets that encompass 12 different characteristics to the primary ports and internal signals. With coarse-grained asset reassignment based on external and internal signal connections, matching can be performed against trusted IPs to classify the functionality of an unknown soft IP. Further analysis is done using a Golden Reference Library (GRL) containing information about known Trojan-free and Trojan-infested designs and serves as a vital component for unknown soft IP comparison. Following functional identification, the unknown soft IP is run through a fine-grained reassignment strategy to ensure usage of up-to-date GRL assets, and then the matching process is used to determine whether said IP is Trojan-infested or Trojan-free. This necessitates a large GRL while maintaining a balance of computational resources and high accuracy to ensure effective matching

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation
    • …
    corecore