396 research outputs found

    A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory

    Get PDF
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations

    Representation and Reality by Language: How to make a home quantum computer?

    Get PDF
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Minds, Machines and Gödel: a Retrospect

    Get PDF
    In this paper Lucas comes back to Gödelian argument against Mecanism to clarify some points. First of all, he explains his use of Gödel’s theorem instead of Turing’s theorem, showing how Gödel’ theorem, but not Turing’s theorem, raises questions concerning truth and reasoning that bear on the nature of mind and how Turing’s theorem suggests that there is something that cannot be done by any computers but not that it can be done by human minds. He considers moreover how Gödel’s theorem can be interpreted as a sophisticated form of the Cretan paradox, posed by Epimenides, able to escape the viciously self-referential nature of the Cretan paradox, and how it can be used against Mechanism as a schema of disproof. Finally, Lucas suggests some answers to the most recurrent criticisms against his argument: criticisms about the implicit idealisation in the way he set up the context between mind and machine; questions concerning modality and finitude, issues of transfinite arithmetic; questions concerning the need of formalizing rational inference and some questions about consistency

    Human-effective computability

    Get PDF

    Synchronous Online Philosophy Courses: An Experiment in Progress

    Get PDF
    There are two main ways to teach a course online: synchronously or asynchronously. In an asynchronous course, students can log on at their convenience and do the course work. In a synchronous course, there is a requirement that all students be online at specific times, to allow for a shared course environment. In this article, the author discusses the strengths and weaknesses of synchronous online learning for the teaching of undergraduate philosophy courses. The author discusses specific strategies and technologies he uses in the teaching of online philosophy courses. In particular, the author discusses how he uses videoconferencing to create a classroom-like environment in an online class
    • …
    corecore