36,986 research outputs found

    Semantics Through Pictures: towards a diagrammatic semantics for object-oriented modelling notations

    Get PDF
    An object-oriented (OO) model has a static component, the set of allowable snapshots or system states, and a dynamic component, the set of filmstrips or sequences of snapshots. Diagrammatic notations, such as those in UML, each places constraints on the static and/or dynamic models. A formal semantics of OO modeling notations can be constructed by providing a formal description of (i) sets of snapshots and filmstrips, (ii) constraints on those sets, and (iii) the derivation of those constraints from diagrammatic notations. In addition, since constraints are contributed by many diagrams for the same model, a way of doing this compositionally is desirable. One approach to the semantics is to use first-order logic for (i) and (ii), and theory inclusion with renaming, as in Larch, to characterize composition. A common approach to (iii) is to bootstrap: provide a semantics for a kernel of the notation and then use the kernel to give a semantics to the other notations. This only works if a kernel which is sufficiently expressive can be identified, and this is not the case for UML. However, we have developed a diagrammatic notation, dubbed constraint diagrams, which seems capable of expressing most if not all static and dynamic constraints, and it is proposed that this be used to give a diagrammatic semantics to OO models

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Multilevel Contracts for Trusted Components

    Full text link
    This article contributes to the design and the verification of trusted components and services. The contracts are declined at several levels to cover then different facets, such as component consistency, compatibility or correctness. The article introduces multilevel contracts and a design+verification process for handling and analysing these contracts in component models. The approach is implemented with the COSTO platform that supports the Kmelia component model. A case study illustrates the overall approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)

    Specification of multiparty audio and video interaction based on the Reference Model of Open Distributed Processing

    Get PDF
    The Reference Model of Open Distributed Processing (RM-ODP) is an emerging ISO/ITU-T standard. It provides a framework of abstractions based on viewpoints, and it defines five viewpoint languages to model open distributed systems. This paper uses the viewpoint languages to specify multiparty audio/video exchange in distributed systems. To the designers of distributed systems, it shows how the concepts and rules of RM-ODP can be applied.\ud \ud The ODP Âżbinding objectÂż is an important concept to model continuous data flows in distributed systems. We take this concept as a basis for multiparty audio and video flow exchanges, and we provide five ODP viewpoint specifications, each emphasising a particular concern. To ensure overall correctness, special attention is paid to the mapping between the ODP viewpoint specifications

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure
    • 

    corecore