923 research outputs found

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    On the Consistency of Ordinal Regression Methods

    Get PDF
    Many of the ordinal regression models that have been proposed in the literature can be seen as methods that minimize a convex surrogate of the zero-one, absolute, or squared loss functions. A key property that allows to study the statistical implications of such approximations is that of Fisher consistency. Fisher consistency is a desirable property for surrogate loss functions and implies that in the population setting, i.e., if the probability distribution that generates the data were available, then optimization of the surrogate would yield the best possible model. In this paper we will characterize the Fisher consistency of a rich family of surrogate loss functions used in the context of ordinal regression, including support vector ordinal regression, ORBoosting and least absolute deviation. We will see that, for a family of surrogate loss functions that subsumes support vector ordinal regression and ORBoosting, consistency can be fully characterized by the derivative of a real-valued function at zero, as happens for convex margin-based surrogates in binary classification. We also derive excess risk bounds for a surrogate of the absolute error that generalize existing risk bounds for binary classification. Finally, our analysis suggests a novel surrogate of the squared error loss. We compare this novel surrogate with competing approaches on 9 different datasets. Our method shows to be highly competitive in practice, outperforming the least squares loss on 7 out of 9 datasets.Comment: Journal of Machine Learning Research 18 (2017

    Robust Loss Functions under Label Noise for Deep Neural Networks

    Full text link
    In many applications of classifier learning, training data suffers from label noise. Deep networks are learned using huge training data where the problem of noisy labels is particularly relevant. The current techniques proposed for learning deep networks under label noise focus on modifying the network architecture and on algorithms for estimating true labels from noisy labels. An alternate approach would be to look for loss functions that are inherently noise-tolerant. For binary classification there exist theoretical results on loss functions that are robust to label noise. In this paper, we provide some sufficient conditions on a loss function so that risk minimization under that loss function would be inherently tolerant to label noise for multiclass classification problems. These results generalize the existing results on noise-tolerant loss functions for binary classification. We study some of the widely used loss functions in deep networks and show that the loss function based on mean absolute value of error is inherently robust to label noise. Thus standard back propagation is enough to learn the true classifier even under label noise. Through experiments, we illustrate the robustness of risk minimization with such loss functions for learning neural networks.Comment: Appeared in AAAI 201

    Convex Calibration Dimension for Multiclass Loss Matrices

    Full text link
    We study consistency properties of surrogate loss functions for general multiclass learning problems, defined by a general multiclass loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient conditions for a surrogate loss to be calibrated with respect to a loss matrix in this setting. We then introduce the notion of convex calibration dimension of a multiclass loss matrix, which measures the smallest `size' of a prediction space in which it is possible to design a convex surrogate that is calibrated with respect to the loss matrix. We derive both upper and lower bounds on this quantity, and use these results to analyze various loss matrices. In particular, we apply our framework to study various subset ranking losses, and use the convex calibration dimension as a tool to show both the existence and non-existence of various types of convex calibrated surrogates for these losses. Our results strengthen recent results of Duchi et al. (2010) and Calauzenes et al. (2012) on the non-existence of certain types of convex calibrated surrogates in subset ranking. We anticipate the convex calibration dimension may prove to be a useful tool in the study and design of surrogate losses for general multiclass learning problems.Comment: Accepted to JMLR, pending editin
    corecore