2,764 research outputs found

    Visual Preferences and Human Interactions with Shading and Electric Lighting Systems

    Get PDF
    Buildings in the United States are responsible for 40% of the primary energy use and 30% of carbon dioxide emissions. As awareness is being raised for the energy consumption and environmental impacts of buildings, it is not surprising that improving building performance has gained significant attention over the past years. Increasing the energy efficiency and reducing the emissions associated with buildings is possible through the use of high-performance building design and implementation of advanced building controls. Moreover, as part of the modern life style, people in developed countries spend most of their time inside the buildings. This fact necessitates consideration of two important requirements. First that energy saving achieved by efficiency methods in practice should not compromise occupants’ comfort. Second, energy impacts of building users and their indoor environment preferences should be taken into account at both design and operation phases. Therefore, understanding and modeling human-building interactions and their links to energy consumption and occupant satisfaction with the indoor environment is the main goal of this research. To this end and with a focus on the visual environment, systematic data collection from a large number of participants is undertaken and novel probabilistic modeling approaches are explored to provide new insights towards human-centered sustainable buildings. The specific research objectives of this thesis are: 1. Study human interactions with motorized roller shades and dimmable electric lights as well as human perception and satisfaction with the luminous environment in private offices with variable daylight and electric light conditions. 2. Develop a novel Bayesian approach to model the interrelated human interactions with window shades and electric lights. 3. Develop a Bayesian classification and inference modeling framework for occupants’ visual preferences in daylit perimeter offices. To this end, four identical private offices in a high performance building located in West Lafayette, IN were equipped with sensing network and online survey questionnaires to study almost 300 occupants during the two sets of field studies conducted for this thesis. The first field study extends the knowledge of human-building interactions to advanced building systems such as motorized roller shades and dimmable electric lights and reveals behavioral patterns enabled through side-by-side comparisons of different environmental controls and user interfaces ranging from fully automated to fully manual and from low to high levels of accessibility (wall switch, remote controller and graphical web interface). Results of the field study reveal: (a) occupational dynamics and human variables as two key features, in addition to environmental variables, in describing human-shading and -electric lighting interactions; (b) higher daylight utilization in offices with easy-to-access controls; (c) strong preference for customized indoor climate, along with a relationship between occupant perception of control and acceptability of a wider range of visual conditions. With the insights gained from the first field study, the research extends to exploit the resulted dataset as a basis for the development of a hierarchical Bayesian approach which is used, for the first time, to model human interactions with motorized roller shades and dimmable electric lights. Bayesian multivariate binary-choice logit models have been constructed to predict shade raising/lowering and electric light increasing actions while Bayesian regression models with built-in physical constraints to estimate the magnitude of shading and electric lighting actions. The proposed models, in their structure, account for (a) intermediate operating states of the systems; (b) interrelated operation of shades and lights; (c) personal characteristics and human attributes. Moreover, the developed human-building interaction modeling framework benefits from the advantages of the Bayesian formalism as it (a) provides a systematic approach to identify significant features in describing the human-building interactions; (b) incorporates prior beliefs about the systems; (c) captures the epistemic uncertainty, which is important when dealing with small-sized datasets, a ubiquitous issue in human data collection in actual buildings. The second field study was designed and conducted to collect data for occupants’ satisfaction with the visual environment when exposed to different combinations of daylight and electric light conditions, along with data from room sensors, shading and light dimming states. The resulted dataset is then used as a basis to model occupants’ visual preferences such as prefer darker, prefer brighter, or satisfied with current conditions. Bayesian multinomial logistic regression is augmented with Dirichlet process prior to encode within the model structure that occupants’ visual preferences are influenced by a combination of environmental and control state variables as well as individual visual characteristics. The latter is treated as a hidden random variable which is used to cluster occupants with similar visual preference characteristics and to determine the optimal number of clusters among the observed population. Modeling results based on observations from 75 occupants in glare-free conditions suggest work plane illuminance, window unshaded area, and electric light ratio as significant features of the general visual preference model and reveal the existence of three distinct clusters with physical interpretation; preference for bright, moderate, and dark conditions. In the final step, a method for learning the visual preferences of new occupants is deployed which uses a mixture of the general probabilistic sub-models to infer new occupants’ cluster values and personalized preference profiles. The proposed approach proves to be efficient as it is shown to predict personalized profiles with 81% prediction accuracy with very few observations (less than 16) from each new occupant. In summary, the systematic data collection methods and prototype interfaces used in this dissertation establish a consistent and reliable approach for studying human interactions with building systems and satisfaction with the indoor environment. Unique datasets for human attributes towards the visual environment in perimeter building zones have been generated especially for the occupants’ direct preference votes with different visual conditions which is currently lacked in the literature. The probabilistic models for human interactions with shading and lighting systems and occupants’ visual preferences incorporate individual characteristics and account for uncertainties associated with limited data, thus, are to increase prediction accuracy when implemented in Building Performance Simulation tools. The research presented herein facilitates an effective pathway towards implementation of adaptive personalized environments and is a necessary precursor for future investigation and expansion to human-centered building controls

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review

    Full text link
    Context: Machine Learning (ML) has been at the heart of many innovations over the past years. However, including it in so-called 'safety-critical' systems such as automotive or aeronautic has proven to be very challenging, since the shift in paradigm that ML brings completely changes traditional certification approaches. Objective: This paper aims to elucidate challenges related to the certification of ML-based safety-critical systems, as well as the solutions that are proposed in the literature to tackle them, answering the question 'How to Certify Machine Learning Based Safety-critical Systems?'. Method: We conduct a Systematic Literature Review (SLR) of research papers published between 2015 to 2020, covering topics related to the certification of ML systems. In total, we identified 217 papers covering topics considered to be the main pillars of ML certification: Robustness, Uncertainty, Explainability, Verification, Safe Reinforcement Learning, and Direct Certification. We analyzed the main trends and problems of each sub-field and provided summaries of the papers extracted. Results: The SLR results highlighted the enthusiasm of the community for this subject, as well as the lack of diversity in terms of datasets and type of models. It also emphasized the need to further develop connections between academia and industries to deepen the domain study. Finally, it also illustrated the necessity to build connections between the above mention main pillars that are for now mainly studied separately. Conclusion: We highlighted current efforts deployed to enable the certification of ML based software systems, and discuss some future research directions.Comment: 60 pages (92 pages with references and complements), submitted to a journal (Automated Software Engineering). Changes: Emphasizing difference traditional software engineering / ML approach. Adding Related Works, Threats to Validity and Complementary Materials. Adding a table listing papers reference for each section/subsection

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the ïŹrst to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica. Universidade do Porto. Faculdade de Engenharia. 201
    • 

    corecore