14,194 research outputs found

    Construction of a novel fungal gus expression plasmid, and its evaluation in Aspergillus nidulans : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Genetics at Massey University

    Get PDF
    A GUS expression plasmid, pFunGus, was constructed containing a multi-cloning site for the insertion of gene regulatory elements, to be used in fungal reporter gene studies. A derivative of pFunGus (pFG-gpd) was constructed by the insertion of the gpdA promoter (glyceradehyde-3-phosphatc dehydrogenase) into the multi-cloning site of pFunGus for the assessment of the plasmid's transformation and expression properties in Aspergillus niduans. The correct construction of pFunGus and pFG-gpd was verified by analytical restriction digests and by its property of GUS expression in A. nidulans. The plasmid was integrated into the A. nidulans genome via cotransformation with the phleomycin resistance plasmid, pAN8-l. Transformation frequencies of between 3 and 250 transformants per µg of pAN8-l DNA were obtained. Initial screening for cotransformation yielded no pFG-gpd transformants. Attempts to improve cotransformation frequencies by optimisation of cotransformation conditions were unsuccessful. However, large scale screenings of transformants lead to cotransformants being isolated at a very low cotransformation frequency. Approximately 0.45% of pAN8-l transformants possessed the GUS phenotype. The eight pFG-gpd transformants obtained were analysed by Southern hybridisation. Six out of the eight transformants had a single copy integration. Of the remaining two transformants, one had three copies integrated at separate locations, one of which was disrupted, and the other had four copies integrated as tandem repeats, one of which was disrupted. All the transforming DNA appeared to be integrated ectopically. The physiology of the transformants was assessed by dry weight increase, colony extension and total protein content. These showed that the transformants biology was not significantly compromised by the transforming DNA. Finally, high levels of GUS expression were observed in all pFG-gpd transformants and the GUS expression per copy of the GUS expression cassette integrated into the genome was constant. These results showed that the transformed gene copy number determined the levels of gene activity rather than the position of integration in the genome. Overall these results demonstrate the potential application of the versatile GUS expression plasmid, pFunGus for reporter gene studies in filamentous fungi

    Mapping Equivalence for Symbolic Sequences: Theory and Applications

    Full text link
    Processing of symbolic sequences represented by mapping of symbolic data into numerical signals is commonly used in various applications. It is a particularly popular approach in genomic and proteomic sequence analysis. Numerous mappings of symbolic sequences have been proposed for various applications. It is unclear however whether the processing of symbolic data provides an artifact of the numerical mapping or is an inherent property of the symbolic data. This issue has been long ignored in the engineering and scientific literature. It is possible that many of the results obtained in symbolic signal processing could be a byproduct of the mapping and might not shed any light on the underlying properties embedded in the data. Moreover, in many applications, conflicting conclusions may arise due to the choice of the mapping used for numerical representation of symbolic data. In this paper, we present a novel framework for the analysis of the equivalence of the mappings used for numerical representation of symbolic data. We present strong and weak equivalence properties and rely on signal correlation to characterize equivalent mappings. We derive theoretical results which establish conditions for consistency among numerical mappings of symbolic data. Furthermore, we introduce an abstract mapping model for symbolic sequences and extend the notion of equivalence to an algebraic framework. Finally, we illustrate our theoretical results by application to DNA sequence analysis

    Alignment-free Genomic Analysis via a Big Data Spark Platform

    Get PDF
    Motivation: Alignment-free distance and similarity functions (AF functions, for short) are a well established alternative to two and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to data-intensive applications, the computation of AF functions is a Big Data problem, with the recent Literature indicating that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat surprisingly, despite the increasing popularity of Big Data technologies in Computational Biology, the development of a Big Data platform for those tasks has not been pursued, possibly due to its complexity. Results: We fill this important gap by introducing FADE, the first extensible, efficient and scalable Spark platform for Alignment-free genomic analysis. It supports natively eighteen of the best performing AF functions coming out of a recent hallmark benchmarking study. FADE development and potential impact comprises novel aspects of interest. Namely, (a) a considerable effort of distributed algorithms, the most tangible result being a much faster execution time of reference methods like MASH and FSWM; (b) a software design that makes FADE user-friendly and easily extendable by Spark non-specialists; (c) its ability to support data- and compute-intensive tasks. About this, we provide a novel and much needed analysis of how informative and robust AF functions are, in terms of the statistical significance of their output. Our findings naturally extend the ones of the highly regarded benchmarking study, since the functions that can really be used are reduced to a handful of the eighteen included in FADE

    WormBase: a multi-species resource for nematode biology and genomics

    Get PDF
    WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system

    Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator noccaea caerulescens

    Get PDF
    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOSTM clones with insert sizes ~20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter b-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae

    Phylogeographic evidence of cognate recognition site patterns and transformation efficiency differences in H. pylori: theory of strain dominance

    Get PDF
    BACKGROUND: Helicobacter pylori has diverged in parallel to its human host, leading to distinct phylogeographic populations. Recent evidence suggests that in the current human mixing in Latin America, European H. pylori (hpEurope) are increasingly dominant at the expense of Amerindian haplotypes (hspAmerind). This phenomenon might occur via DNA recombination, modulated by restriction-modification systems (RMS), in which differences in cognate recognition sites (CRS) and in active methylases will determine direction and frequency of gene flow. We hypothesized that genomes from hspAmerind strains that evolved from a small founder population have lost CRS for RMS and active methylases, promoting hpEurope’s DNA invasion. We determined the observed and expected frequencies of CRS for RMS in DNA from 7 H. pylori whole genomes and 110 multilocus sequences. We also measured the number of active methylases by resistance to in vitro digestion by 16 restriction enzymes of genomic DNA from 9 hpEurope and 9 hspAmerind strains, and determined the direction of DNA uptake in co-culture experiments of hspAmerind and hpEurope strains. RESULTS: Most of the CRS were underrepresented with consistency between whole genomes and multilocus sequences. Although neither the frequency of CRS nor the number of active methylases differ among the bacterial populations (average 8.6 ± 2.6), hspAmerind strains had a restriction profile distinct from that in hpEurope strains, with 15 recognition sites accounting for the differences. Amerindians strains also exhibited higher transformation rates than European strains, and were more susceptible to be subverted by larger DNA hpEurope-fragments than vice versa. CONCLUSIONS: The geographical variation in the pattern of CRS provides evidence for ancestral differences in RMS representation and function, and the transformation findings support the hypothesis of Europeanization of the Amerindian strains in Latin America via DNA recombination

    A novel lncRNA as a positive regulator of carotenoid biosynthesis in Fusarium

    Get PDF
    The fungi Fusarium oxysporum and Fusarium fujikuroi produce carotenoids, lipophilic terpenoid pigments of biotechnological interest, with xanthophyll neurosporaxanthin as the main end product. Their carotenoid biosynthesis is activated by light and negatively regulated by the RING-finger protein CarS. Global transcriptomic analysis identified in both species a putative 1-kb lncRNA that we call carP, referred to as Fo-carP and Ff-carP in each species, upstream to the gene carS and transcribed from the same DNA strand. Fo-carP and Ff-carP are poorly transcribed, but their RNA levels increase in carS mutants. The deletion of Fo-carP or Ff-carP in the respective species results in albino phenotypes, with strong reductions in mRNA levels of structural genes for carotenoid biosynthesis and higher mRNA content of the carS gene, which could explain the low accumulation of carotenoids. Upon alignment, Fo-carP and Ff-carP show 75-80% identity, with short insertions or deletions resulting in a lack of coincident ORFs. Moreover, none of the ORFs found in their sequences have indications of possible coding functions. We conclude that Fo-carP and Ff-carP are regulatory lncRNAs necessary for the active expression of the carotenoid genes in Fusarium through an unknown molecular mechanism, probably related to the control of carS function or expressio

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor.

    Get PDF
    Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials
    corecore