6,384 research outputs found

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Random Forest as a tumour genetic marker extractor

    Get PDF
    Identifying tumour genetic markers is an essential task for biomedicine. In this thesis, we analyse a dataset of chromosomal rearrangements of cancer samples and present a methodology for extracting genetic markers from this dataset by using a Random Forest as a feature selection tool

    Conceptual knowledge acquisition in biomedicine: A methodological review

    Get PDF
    AbstractThe use of conceptual knowledge collections or structures within the biomedical domain is pervasive, spanning a variety of applications including controlled terminologies, semantic networks, ontologies, and database schemas. A number of theoretical constructs and practical methods or techniques support the development and evaluation of conceptual knowledge collections. This review will provide an overview of the current state of knowledge concerning conceptual knowledge acquisition, drawing from multiple contributing academic disciplines such as biomedicine, computer science, cognitive science, education, linguistics, semiotics, and psychology. In addition, multiple taxonomic approaches to the description and selection of conceptual knowledge acquisition and evaluation techniques will be proposed in order to partially address the apparent fragmentation of the current literature concerning this domain

    Predictive modelling of hospital readmissions in diabetic patients clusters

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceDiabetes is a global public health problem with increasing incidence over the past 10 years. This disease's social and economic impacts are widely assessed worldwide, showing a direct and gradual decrease in the individual's ability to work, a gradual loss in the scale of quality of life and a burden on personal finances. The recurrence of hospitalisation is one of the most significant indexes in measuring the quality of care and the opportunity to optimise resources. Numerous techniques identify the patient who will need to be readmitted, such as LACE and HOSPITAL. The purpose of this study was to use a dataset related to the risk of hospital readmission in patients with Diabetes first to apply a clustering of subgroups by similarity. Then structures a predictive analysis with the main algorithms to identify the methodology of best performance. Numerous approaches were performed to prepare the dataset for these two interventions. The results found in the first phase were two clusters based on the total number of hospital recurrences and others on total administrative costs, with K=3. In the second phase, the best algorithm found was Neural Network 3, with a ROC of 0.68 and a misclassification rate of 0.37. When applied the same algorithm in the clusters, there were no gains in the confidence of the indexes, suggesting that there are no substantial gains in the division of subpopulations since the disease has the same behaviour and needs throughout its development

    Does initial postgraduate career intention and social demographics predict perceived career behaviour?:A national cross-sectional survey of UK postgraduate doctors

    Get PDF
    Acknowledgements: Our thanks to all those FP2 doctors who participated in the survey. Our thanks also to the Foundation Programme Directors across the UK for allowing permission to conduct research on this data set. No patients or any members of the public were involved in this study. Funding: Our thanks go to NHS Education for Scotland for funding Gillian Scanlan’s programme of work through the Scottish Medical Education Research Consortium (SMERC). Data sharing statement: The data reported is from the UKFPO dataset, and any data shared would need the permission of the UK Foundation Programme directorsPeer reviewedPublisher PD

    An extended HD Fluent Analysis of Temporal knowledge in OWL-based clinical Guideline System

    Get PDF
    The Web Ontology Language (OWL) based clinical guideline system is a kind of clinical decision support system which is often used to assist health professionals to find clinical recommendations from the guidelines and check clinical compliance issues in terms of the guideline recommendations. However, due to some limitations of the current OWL language constructs, temporal knowledge contained in various knowledge domains cannot be directly represented in OWL. As a result, the representation, query and reasoning of temporal knowledge are largely ignored in many OWL-based clinical guideline ontology systems. The aim of this research is to investigate a temporal knowledge modelling method namely “4D fluent” and extend it to represent the temporal constraints contained in clinical guideline recommendations within OWL language constructs. The extended 4D fluent method can model temporal constraints including valid calendar time, interval, duration, repetitive or cyclical temporal constraints and temporal relations such that it can enable reasoning over these temporal constraints in the OWL-based clinical guideline ontology system and overcome the shortcoming of the traditional OWL-based clinical guideline system to an extent
    • …
    corecore