20,589 research outputs found

    An optimal feedback model to prevent manipulation behaviours in consensus under social network group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A novel framework to prevent manipulation behaviour in consensus reaching process under social network group decision making is proposed, which is based on a theoretically sound optimal feedback model. The manipulation behaviour classification is twofold: (1) ‘individual manipulation’ where each expert manipulates his/her own behaviour to achieve higher importance degree (weight); and (2) ‘group manipulation’ where a group of experts force inconsistent experts to adopt specific recommendation advices obtained via the use of fixed feedback parameter. To counteract ‘individual manipulation’, a behavioural weights assignment method modelling sequential attitude ranging from ‘dictatorship’ to ‘democracy’ is developed, and then a reasonable policy for group minimum adjustment cost is established to assign appropriate weights to experts. To prevent ‘group manipulation’, an optimal feedback model with objective function the individual adjustments cost and constraints related to the threshold of group consensus is investigated. This approach allows the inconsistent experts to balance group consensus and adjustment cost, which enhances their willingness to adopt the recommendation advices and consequently the group reaching consensus on the decision making problem at hand. A numerical example is presented to illustrate and verify the proposed optimal feedback model

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A Granular Computing-Based Model for Group Decision-Making in Multi-Criteria and Heterogeneous Environments

    Get PDF
    Granular computing is a growing computing paradigm of information processing that covers any techniques, methodologies, and theories employing information granules in complex problem solving. Within the recent past, it has been applied to solve group decision-making processes and different granular computing-based models have been constructed, which focus on some particular aspects of these decision-making processes. This study presents a new granular computing-based model for group decision-making processes defined in multi-criteria and heterogeneous environments that is able to improve with minimum adjustment both the consistency associated with individual decision-makers and the consensus related to the group. Unlike the existing granular computing-based approaches, this new one is able to take into account a higher number of features when dealing with this kind of decision-making processes

    Distributed Linguistic Representations in Decision Making: Taxonomy, Key Elements and Applications, and Challenges in Data Science and Explainable Artificial Intelligence

    Get PDF
    Distributed linguistic representations are powerful tools for modelling the uncertainty and complexity of preference information in linguistic decision making. To provide a comprehensive perspective on the development of distributed linguistic representations in decision making, we present the taxonomy of existing distributed linguistic representations. Then, we review the key elements and applications of distributed linguistic information processing in decision making, including the distance measurement, aggregation methods, distributed linguistic preference relations, and distributed linguistic multiple attribute decision making models. Next, we provide a discussion on ongoing challenges and future research directions from the perspective of data science and explainable artificial intelligence.National Natural Science Foundation of China (NSFC) 71971039 71421001,71910107002,71771037,71874023 71871149Sichuan University sksyl201705 2018hhs-5

    Risk assessment in project management by a graphtheory- based group decision making method with comprehensive linguistic preference information

    Get PDF
    Risk assessment is a vital part in project management. It is possible that experts may provide comprehensive linguistic preference information in distinct forms with respect to different aspects of the risk assessment problem in investment management. It is a challenge to model and deal with comprehensive linguistic preference assessments in multiple forms given by experts. In this regard, this paper defines the generalised probabilistic linguistic preference relation (GPLPR) to represent different forms of linguistic preference information in a unified structure. Then, a probability cutting method is proposed to simplify the representation of a GPLPR. Afterwards, a graph-theory-based method is developed to improve the consistency degree of a GPLPR. A group decision making method with GPLPRs is then proposed to carry on the risk assessment in project management. Discussions regarding the comparative analysis and managerial insights are given

    Risk assessment in project management by a graph-theory-based group decision making method with comprehensive linguistic preference information

    Get PDF
    The work was supported by the National Natural Science Foundation of China (71971145, 71771156, 72171158), the Andalusian Government under Project P20-00673, and also by the Spanish State Research Agency under Project PID2019-103880RB-I00/AEI/10.13039/501100011033.Risk assessment is a vital part in project management. It is possible that experts may provide comprehensive linguistic preference information in distinct forms with respect to different aspects of the risk assessment problem in investment management. It is a challenge to model and deal with comprehensive linguistic preference assessments in multiple forms given by experts. In this regard, this paper defines the generalised probabilistic linguistic preference relation (GPLPR) to represent different forms of linguistic preference information in a unified structure. Then, a probability cutting method is proposed to simplify the representation of a GPLPR. Afterwards, a graph-theory-based method is developed to improve the consistency degree of a GPLPR. A group decision making method with GPLPRs is then proposed to carry on the risk assessment in project management. Discussions regarding the comparative analysis and managerial insights are given.National Natural Science Foundation of China (NSFC) 71971145 71771156 72171158Andalusian Government P20-00673Spanish Government PID2019-103880RB-I00/AEI/10.13039/50110001103

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    A Variance-Based Consensus Degree in Group Decision Making Problems

    Get PDF
    The variance is a well-known statistical measure and is frequently used for the calculation of variability. This concept can be used to obtain the degree of agreement in groups that have to make decisions. In this study, we propose the use of a variance derivative as an alternative for the calculation of the degree of consensus for Group Decision Making problems with fuzzy preference relations. As revealed by a subsequent comparative study, the values obtained by this new method are comparable to the values obtained by means of frequently used methods that employ distance functions and aggregation operators, while it turns out to be a simpler application method
    • 

    corecore