706 research outputs found

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated

    A Theory of Structured Propositions

    Get PDF
    This paper argues that the theory of structured propositions is not undermined by the Russell-Myhill paradox. I develop a theory of structured propositions in which the Russell-Myhill paradox doesn't arise: the theory does not involve ramification or compromises to the underlying logic, but rather rejects common assumptions, encoded in the notation of the λ\lambda-calculus, about what properties and relations can be built. I argue that the structuralist had independent reasons to reject these underlying assumptions. The theory is given both a diagrammatic representation, and a logical representation in a novel language. In the latter half of the paper I turn to some technical questions concerning the treatment of quantification, and demonstrate various equivalences between the diagrammatic and logical representations, and a fragment of the λ\lambda-calculus

    A Semantic Approach to Illative Combinatory Logic

    Get PDF
    This work introduces the theory of illative combinatory algebras, which is closely related to systems of illative combinatory logic. We thus provide a semantic interpretation for a formal framework in which both logic and computation may be expressed in a unified manner. Systems of illative combinatory logic consist of combinatory logic extended with constants and rules of inference intended to capture logical notions. Our theory does not correspond strictly to any traditional system, but draws inspiration from many. It differs from them in that it couples the notion of truth with the notion of equality between terms, which enables the use of logical formulas in conditional expressions. We give a consistency proof for first-order illative combinatory algebras. A complete embedding of classical predicate logic into our theory is also provided. The translation is very direct and natural

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Minimal Negation in the Ternary Relational Semantics

    Get PDF
    Minimal Negation is defined within the basic positive relevance logic in the relational ternary semantics: B+. Thus, by defining a number of subminimal negations in the B+ context, principles of weak negation are shown to be isolable. Complete ternary semantics are offered for minimal negation in B+. Certain forms of reductio are conjectured to be undefinable (in ternary frames) without extending the positive logic. Complete semantics for such kinds of reductio in a properly extended positive logic are offered

    Revisiting the Duality of Computation: An Algebraic Analysis of Classical Realizability Models

    Get PDF

    Inductive Definition and Domain Theoretic Properties of Fully Abstract

    Full text link
    A construction of fully abstract typed models for PCF and PCF^+ (i.e., PCF + "parallel conditional function"), respectively, is presented. It is based on general notions of sequential computational strategies and wittingly consistent non-deterministic strategies introduced by the author in the seventies. Although these notions of strategies are old, the definition of the fully abstract models is new, in that it is given level-by-level in the finite type hierarchy. To prove full abstraction and non-dcpo domain theoretic properties of these models, a theory of computational strategies is developed. This is also an alternative and, in a sense, an analogue to the later game strategy semantics approaches of Abramsky, Jagadeesan, and Malacaria; Hyland and Ong; and Nickau. In both cases of PCF and PCF^+ there are definable universal (surjective) functionals from numerical functions to any given type, respectively, which also makes each of these models unique up to isomorphism. Although such models are non-omega-complete and therefore not continuous in the traditional terminology, they are also proved to be sequentially complete (a weakened form of omega-completeness), "naturally" continuous (with respect to existing directed "pointwise", or "natural" lubs) and also "naturally" omega-algebraic and "naturally" bounded complete -- appropriate generalisation of the ordinary notions of domain theory to the case of non-dcpos.Comment: 50 page

    Categorial Grammar

    Get PDF
    The paper is a review article comparing a number of approaches to natural language syntax and semantics that have been developed using categorial frameworks. It distinguishes two related but distinct varieties of categorial theory, one related to Natural Deduction systems and the axiomatic calculi of Lambek, and another which involves more specialized combinatory operations
    • 

    corecore