3,343 research outputs found

    Qualitative constraint satisfaction problems : algorithms, computational complexity, and extended framework

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Qualitative Spatial and Temporal Reasoning (QSTR) is a subfield of artificial intelligence that represents and reasons with spatial/temporal knowledge in a qualitative way. In the past three decades, researchers have proposed dozens of relational models (known as qualitative calculi), including, among others, Point Algebra (PA) and Interval Algebra (IA) for temporal knowledge, Cardinal Relation Algebra (CRA) and Cardinal Direction Calculus (CDC) for directional spatial knowledge, and the Region Connection Calculus RCC-5/RCC-8 for topological spatial knowledge. Relations are used in qualitative calculi for representing spatial/temporal information (e.g. Germany is to the east of France) and constraints (e.g. the to-be-established landfill should be disjoint from any lake). The reasoning tasks in QSTR are formalised via the qualitative constraint satisfaction problem (QCSP). As the central reasoning problem in QCSP, the consistency problem (which decides the consistency of a number of constraints in certain qualitative calculi) has been extensively investigated in the literature. For PA, IA, CRA, and RCC-5/RCC-8, the consistency problem can be solved by composition-based reasoning. For CDC, however, composition-based reasoning is incomplete, and the consistency problem in CDC remains challenging. Previous works in QCSP assume that qualitative constraints only concern completely unknown entities. Therefore, constraints about landmarks (i.e., fixed entities) cannot be properly expressed. This has significantly restricted the usefulness of QSTR in real-world applications. The main contributions of this thesis are as follows. (i) The composition-based method is one of the most important reasoning methods in QSTR. This thesis designs a semi-automatic algorithm for generating composition tables for general qualitative calculi. This provides a partial answer to the challenge proposed by Cohn in 1995. (ii) Schockaert et al. (2008) extend the RCC models interpreted in Euclidean topologies to the fuzzy context and show that composition-based reasoning is sufficient to solve fuzzy QCSP, where 31 composition rules are used. This thesis first shows that only six of the 31 composition rules are necessary, and then introduces a method which consistently fuzzifies any classical RCC models. This thesis also proposes a polynomial algorithm for realizing solutions of consistent fuzzy RCC constraints. (iii) Composition-based reasoning is incomplete for solving QCSP over the CDC. This thesis provides a cubic algorithm which for the first time solves the consistency problem of complete basic CDC networks, and further shows that the problem becomes NP-complete if the networks are allowed to be incomplete. This draws a sharp boundary between the tractable and intractable subclasses of the CDC. (iv) This thesis proposes a more general and more expressive QCSP framework, in which a variable is allowed to be a landmark (i.e., a fixed object), or to be chosen among several landmarks. The computational complexity of the consistency problems in the new framework is then investigated, covering all qualitative calculi mentioned above. For basic networks, the consistency problem remains tractable for Point Algebra, but becomes NP-complete for all the remaining qualitative calculi. A special case in which a variable is either a landmark or is totally unknown has also been studied. (v) A qualitative network is minimal if it cannot be refined without changing its solution set. Unlike the assumptions in the literature, this thesis shows that computing a solution of minimal networks is NP-complete for (partially ordered) PA, CRA, IA, and RCC-5/RCC-8. As a by-product, it has also been proved that determining the minimality of networks in these qualitative calculi is NP-complete

    Qualitative constraint satisfaction problems: An extended framework with landmarks

    Full text link
    Dealing with spatial and temporal knowledge is an indispensable part of almost all aspects of human activity. The qualitative approach to spatial and temporal reasoning, known as Qualitative Spatial and Temporal Reasoning (QSTR), typically represents spatial/temporal knowledge in terms of qualitative relations (e.g., to the east of, after), and reasons with spatial/temporal knowledge by solving qualitative constraints. When formulating qualitative constraint satisfaction problems (CSPs), it is usually assumed that each variable could be "here, there and everywhere".1 Practical applications such as urban planning, however, often require a variable to take its value from a certain finite domain, i.e. it is required to be 'here or there, but not everywhere'. Entities in such a finite domain often act as reference objects and are called "landmarks" in this paper. The paper extends the classical framework of qualitative CSPs by allowing variables to take values from finite domains. The computational complexity of the consistency problem in this extended framework is examined for the five most important qualitative calculi, viz. Point Algebra, Interval Algebra, Cardinal Relation Algebra, RCC5, and RCC8. We show that all these consistency problems remain in NP and provide, under practical assumptions, efficient algorithms for solving basic constraints involving landmarks for all these calculi. © 2013 Elsevier B.V

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describe properties of points in the plane and spatial relationships between them. Points are labelled by proposition letters and spatial relations are induced by the four cone-shaped cardinal directions. Cone Logic can be seen as a weakening of Venema's Compass Logic. We prove that, unlike Compass Logic and other projection-based spatial logics, its satisfiability problem is decidable (precisely, PSPACE-complete). We also show that it is expressive enough to capture meaningful interval temporal logics - in particular, the interval temporal logic of Allen's relations "Begins", "During", and "Later", and their transposes

    Describing Images using a Multilayer Framework based on Qualitative Spatial Models

    Get PDF
    To date most research in image processing has been based on quantitative representations of image features using pixel values, however, humans often use abstract and semantic knowledge to describe and analyze images. To enhance cognitive adequacy and tractability, we here present a multilayer framework based on qualitative spatial models. The layout features of segmented images are defined by qualitative spatial models which we introduce, and represented as a set of qualitative spatial constraints. Assigned different semantic and context knowledge, the image segments and the qualitative spatial constraints are interpreted from different perspectives. Finally, the knowledge layer of the framework enables us to describe the image in a natural way by integrating the domain-specified semantic constraints and the spatial constraints

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce
    • …
    corecore