99 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Protocols, performance assessment and consolidation on interfaces for standardization – D3.3

    Get PDF
    The following document presents a detailed description of the protocol for the “ Control Channels for the Cooperation of the Cognitive Management System ” (C4MS) which provides the necessary means to enable proper management of Opportunistic Networks. Additionally, the document defines the methodology that was applied for the purpose of signalling evaluation. The protocol overview presented in section 2 of the main document, provides the C4MS principles. The section includes, among others, the description of the protocol identifiers, procedures, protocol state machines and message format as well as the security asp ects. Section 3 provides a high-level description of the data structures defined within the scope of OneFIT project. The data structures are classified into five categories, i.e.: Profiles, Context, Decisions,Knowledge and Policies. The high level description is complemented by some detailed data structures in the Appendix to D3.3 Section 3[10]. Section 4 provides details on the evaluation methodology applied for the purpose of C4MS performance assessment. The section presents the evaluation plan along with a description of metrics that are to be exploited in the scope of WP3. Section 5 and Section 6 are composed of the signalling evaluation results. Section 5 focuses on the estimation of the signalling load imposed by ON management in different ON phases. Additionally some results for the initialization phase (not explicitly mentioned in the previous phases of the project)and security related aspects are also depicted. Section 6 on the other hand is focused on the evaluation of the signalling traffic generated by different ON related algorithms. Conclusions to the document are drawn in section 7. Detailed description of the C4MS procedures, implementation options based on IEEE 802.21, DIAMTER and 3GPP are depicted in the appendix to the D3.3[10] . Additionally, the appendix incorporates the detailed definition of the information data structures and final set of Message Sequence Charts (MSCs) provided for the OneFIT project.Peer ReviewedPreprin

    Preserving Operation Frequency Privacy of Incumbents in CBRS

    Get PDF
    Citizens Broadband Radio Service (CBRS) is a novel service band in the United States, spanning 3550-3700 MHz, recently opened for commercial cognitive operations. The CBRS has a three tier hierarchical architecture, wherein, the topmost tier users (also called as incumbents) include military radars. The second and third tier facilitate licensed and unlicensed access to the band, respectively. The privacy of incumbents has been a major concern and different schemes have been proposed in the literature to preserve privacy of their location and operation time. However, the privacy of operation frequency of incumbents has not been suitably addressed. The operation frequency of incumbent is vulnerable to inference attacks from the adversary. For instance, an adversary can deduce the operation frequency of incumbent if a compromised device is asked to switch to another channel. Therefore, in this paper, we propose probabilistic usage of dummy incumbents on a channel and analyse the operation frequency privacy of incumbents for snapshot and time based models in the three tier CBRS system. The optimum dummy generation probability is obtained for the snapshot and time based models, varying capabilities of the adversary, and different system parameters. Finally, we verify the proposed results through simulations. Autho

    Técnicas para melhorar a eficiência do sensoriamento colaborativo em redes 5G para áreas remotas

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2020.A revolução dos smartphones em 2007 iniciou a um processo de crescimento exponencial da demanda por serviços de telefonia móvel. O aumento da demanda sem contrapartida da oferta, dependente do espectro disponível provoca uma queda na qualidade dos serviços prestados. As técnicas que usam Rádios cognitivos e acesso dinâmico ao espectro são con- sideradas fundamentais para otimizar a utilização do espectro e aumentar a quantidade de banda disponível para as redes 5G, ao permitir acesso oportunístico ao espectro licenciado ocioso. Diversos estudos apontam a subutilização de bandas, especialmente longe das grandes cidades, em que há menor demanda e menor incentivo econômico para a instalação de infraestrutura por parte das operadoras. Esse comportamento é incentivado devido ao processo de licenciamento de bandas em blocos e alocação estática do espectro, em que uma operadora licencia uma banda e junto a ela fica encarregada por dar cobertura a uma área atrelada à licença, enquanto pequenas operadoras locais ficam completamente de fora dos leilões e são impedidas de competir neste mercado. O acesso dinâmico ao espectro depende de informações que garantam a identificação de transmissões no canal candidato, afim de se reduzir interferência ao detentor da licença do canal. Algumas das técnicas mais comuns para se detectar a ocupação do canal via senso- riamento do espectro são carrier-sense e detecção de energia, dependendo da largura do canal. O sensoriamento colaborativo melhora a capacidade de detecção de uso do canal quando comparado com o sensoriamento individual, visto que diversifica geograficamente a informação disponível para análise. A qualidade do sensoriamento colaborativo depende não só dos sensoriamentos individuais recebidos, mais também da técnica que consolida ou executa a fusão desses resultados. Existem diversos algoritmos de fusão, cada um com vantagens e desvantagens. Algumas das técnicas de fusão clássicas são baseadas em votação k-em-n, em que k sensoriamentos indicando ocupação do canal resultam em uma fusão indicando ocupação do canal. A fusão 1-em-N, OU lógico, resulta em um número alto de falsos positivos, detectando ocupação do canal mesmo quando está desocupado, enquanto minimiza falsos negativos e a não detecção do canal de fato ocupado. Por fim, é parte do ciclo de sensoriamento colaborativo filtrar sensoriamentos de usuários maliciosos que desejam perturbar não só o resultado do sensoriamento colab- orativo como o funcionamento da rede. No caso de uma fusão simples como OU lógico, um único nó malicioso é capaz de inviabilizar por completo o uso oportunístico do es- pectro ao transmitir resultados falsos indicando que o canal está ocupado quando de fato está livre. Diante essa problemática, neste trabalho são propostas duas técnicas para melhorar os resultados do sensoriamento colaborativo, a saber : (1) uma técnica baseada em cadeias de Markov que aplicada aos resultados de sensoriamentos individuais, reduz falsos positivos e falsos negativos, além de reduzir o envio de mensagens de controle ; (2) uma técnica baseada na média harmônica para filtragem de resultados de sensoriamentos individuais recebidos, descartando sensoriamentos de nós mais distantes das fontes de interferência, protegendo de ataques Bizantinos. Ambas as técnicas são avaliadas em cenários de 5G na área rural, em que encontra-se a maior porção de bandas do espectro subutilizadas, candidatas ao acesso oportunístico. A fim de permitir a avaliação das técnicas propostas, foram realizadas diversas alter- ações para o modelo de pilha de rede LTE implementado no simulador de redes a nível de sistemas ns-3. As alterações incluem os procedimentos de sensoriamento do espectro individual feito pelos dispositivos de usuários (UEs), a transmissão dos resultados para o ponto de acesso (eNodeB), a fusão dos resultados recebidos e utilização do resultado de fusão no escalonamento de recursos para os dispositivos. Os sensoriamentos individu- ais são obtidos a partir de curvas de probabilidade de detecção e probabilidade de falsos positivos feitos através de medições em experimentos ou através de simulações a nível de camada física-enlace. As curvas são carregadas durante a configuração inicial da simu- lação, sendo interpoladas conforme necessário. As curvas podem ser tanto baseadas em distância euclidiana quanto em relação sinal ruído e interferência (SINR). O sensoria- mento individual consiste em utilizar a probabilidade de detecção relacionada a um dado valor de SNR ou de distância euclidiana é utilizada para gerar uma amostra aleatória a partir de um gerador com distribuição de Bernoulli. O procedimento se repete a cada 1 milissegundo no ciclo padrão de indicação do subquadro LTE. A técnica baseada em cadeias de Markov se baseia em um Teorema Central do Limite, em que a média de um certo número de amostras uniformemente distribuídas tende a se aproximar ou ao valor real da distribuição de probabilidade fonte ou ao valor central da distribuição. Em outras palavras, ao amostrar uniformemente uma distribuição de- sconhecida com número suficiente de amostras, encontra-se uma boa aproximação para o valor real que é procurado. Este princípio é aplicado para o sensoriamento individual do espectro, em que o valor do último sensoriamento é comparado com o resultado atual, e quando idêntico aumenta o grau de certeza de que este resultado é de fato o real. Quando os resultados diferem, o grau de certeza é perdido. Quando um dado limiar de certeza é ultrapassado, o resultado do sensoriamento que é de fato transmitido para o eNodeB é substituído pelo valor do último sensoriamento. A modelagem deste processo estocástico binomial é feita baseado no lançamento de N moedas, em que apenas o caso em que N resultados iguais consecutivos levam à troca do valor transmitido, sendo facilmente modelado como uma cadeia de Markov de N − 1 estados. Já a técnica baseada em média harmônica se baseia no fato de que as estações próx- imas das fontes de interferência são mais confiáveis que estações distantes, baseando-se nas curvas de probabilidade de detecção. Com isto, é necessário eliminar os resultados de sensoriamentos informados por usuários maliciosos com alguma informação adicional que sirva de prova que seu sensoriamento reportado é falso. Uma das maneiras de se mitigar informações falsas é utilizando a média harmônica dos CQIs reportados, permitindo iden- tificar UEs mais afetados pela fonte de interferência e descartar todos os resultados por UEs pouco afetadas, mais afastadas da fonte. Para poder se confiar no CQI reportado pelos UEs, é necessário medir a quantidade de retransmissões feitas para cada uma delas. Uma taxa de retransmissões próxima de 10% indica um CQI adequado, enquanto taxas próximas de 0% indicam CQI reportado abaixo do real e taxas acima de 10% indicam CQI reportado acima do real. O limiar de retransmissões é definido nos padrões 3GPP. A avaliação das propostas foi feita em duas partes: primeira parte com a validação do modelo proposto para o sensoriamento colaborativo no modelo do padrão LTE do simulador, e a segunda parte avaliando o desempenho das técnicas propostas. Durante a validação, foi confirmado o comportamento esperado do sensoriamento colaborativo (sensoriamentos individuais, transmissão dos resultados e fusões) em termos de taxas de falsos positivos e taxas de falsos negativos quando comparado com os modelos matemáticos. Na avaliação do desempenho das técnicas propostas foram avaliadas acurácia, taxas de falso positivos e taxas de falsos negativos. Em ambos os casos, foram utilizados cenários inspirados em zonas rurais, com: baixo número de nós (10, 20, 50, 100); uma célula com 50 quilômetros de raio; canal de 20 MHz na banda 5 com portadora em 870 MHz; eNodeB transmitindo à 53 dBm; UEs transmitindo à 23 dBm; eNodeB e UEs com antenas com 9 dBi de ganho; detentor da licença do canal (PU) transmitindo à 40 dBm ou 35 dBm; um PU por subcanal de 5 MHz; algoritmos de fusão simples. O cenário de validação foi pouco realístico, com UEs dispersas ao longo de um certo raio fixo de distância do PU, garantindo uma mesma probabilidade de detecção para todos os UEs. Os cenários de avaliação das técnicas foram separados em dois conjuntos, um menos realístico com dispersão aleatória pela célula, outro mais realístico com dispersão aleatória dos PUs pela célula e dispersão aleatória de grupos de UEs pela célula, formando clusters de UESs Os resultados mostram que as técnicas propostas aumentam a acurácia em relação à técnica clássica de fusão de resultados do sensoriamento colaborativo (fusão OU lógico, ou 1-em-N), reduzindo falsos positivos em até 790 vezes, de 63.23% para 0.08% no cenário com dispersão aleatória dos UEs e sem atacantes. Neste mesmo cenário houve um aumento de 0% para 0.47% do número de falsos negativos, sem impactar severamente o detentor da licença do canal. Nos cenários com atacantes, todas as fusões simples apresentam resultados ruins, com ou sem a técnica das cadeias de Markov, até 100% de falsos positivos, inviabilizando o acesso oportunístico. Já a técnica da média harmônica apresenta bom grau de proteção contra atacantes, em especial nos cenários com mais dispositivos. Sem a técnica baseada em Markov e no cenário com 100 UEs, dos quais 10 atacantes, conseguiu reduzir falsos positivos da fusão OU de 100% para 60%, sem aumentar significativamente o número de falsos negativos. Quando as duas técnicas são combinadas, o número de falsos positivos cai para 5% enquanto falsos negativos sobem para 18%. Nos cenários com menos UEs e com clusters, falsos negativos são consistentemente mais altos, porém superiores às fusões 2-em-N, 3-em-N e E utilizando a técnica de Markov no cenário sem atacantes. Em todos os cenários, a técnica baseada em cadeias de Markov também reduziu a taxa média de notificação dos quadros em 2 ordens de grandeza, economizando banda do canal de controle licenciado. Esses resultados permitem concluir que ambas as técnicas são efetivas para o cenário rural para a qual foram propostas. Também se depreende que o número de estados da cadeia de Markov e da técnica da média harmônica podem ser alterados para se trocar alcance da detecção por certeza da detecção e nível de proteção contra atacantes por falsos negativos, respectivamente. Como trabalhos futuros, cabem a adaptação da técnica para: incluir cenários urbanos, mais densos, utilizando técnicas de amostragem; utilização de técnicas de localização (e.g. Time-of-Arrival, Angle-of-Arrival) para segmentação da célula em setores; melhorar a técnica da média harmônica para reduzir falsos negativos mantendo o mesmo nível de proteção contra atacantes.The smartphone revolution of 2007 started an exponential demand growth of mobile con- nectivity. The ever increasing demand requires an increase in supply, which is depends in the amount of available spectrum. The amount of available spectrum however is limited, curving supply growth and reducing the quality of services perceived by the users. Cogni- tive radio and dynamic spectrum access are essential to increase the spectrum utilization and amount of available bandwidth in 5G networks, by opportunistically accessing unused licensed spectrum. The dynamic spectrum access depends on channel information that guarantees the detection of transmissions in the candidate channel, as a means of reducing interference to the channel licensee. The collaborative spectrum sensing increases the channel usage detection capacity when compared to individual spectrum sensing, as there is more geographically diverse information for analysis and decision-making. The quality of the collaborative sensing depends not only on the individual sensing that feeds information into it, but also on the technique that fuses those results into the final sensing result. Two techniques to improve the collaborative spectrum sensing results are proposed in this dissertation: (1) a technique based in Markov chains to smooth consecutive individual spectrum sensing results, reducing both false positives and false negatives, while enabling the reduction of sensing reports by skipping sensing reports with the same results; (2) a technique based in the harmonic mean of the channel quality indicator, used to filter the received individual spectrum sensing, discarding nodes far from the source of interference, mitigating against Byzantine attacks. Both techniques are evaluated in rural 5G scenarios, which are the best place to use opportunistic access due to the amount of unutilized and underused spectrum bands. In order to evaluate the proposed techniques, a set of modifications to the LTE net- work stack model of the ns-3 system-level simulator is proposed. The modifications include a complete collaborative sensing cycle, including: the individual spectrum sensing pro- cedure, performed by user equipment’s (UEs); the transmission of control messages to the access point (eNodeB), the fusion of the received results and utilization of the free spectrum for the UEs. The individual spectrum sensing is performed by interpolating probability of detection curves and false positive probability, which are produced either by experimental measurements or by link-layer simulations. The evaluation of the proposals was made in two parts: first part focusing on the validating the collaborative spectrum sensing cycle implementation and integration to the LTE model; second part focusing on the performance of the proposed techniques. The collaborative spectrum sensing cycle (individual sensing, sensing report and fusion) was validated and closely follows the mathematical model. The evaluation of the techniques included accuracy of the fused result, false positive and false negative rates. The results show the techniques are effective in increasing the accuracy of the collab- orative sensing when compared to the standalone classic fusion techniques (OR fusion, or 1-out-of-n). There were reductions in false positives rates of up to 790 times, from 63.23% to 0.08% in the scenario with randomized dispersion of UEs across the cell and without attackers. In the same scenario, the false negatives increased from 0% to 0.47%, which does not severely impact the licensee with interference. All classic fusions behave very poorly in scenarios with attackers, with and without the Markov chain technique. False positive rates soar to as high as 100%, making the opportunistic access impossible. The harmonic mean-based technique reduces the false positives, providing good protec- tion against attackers especially in scenarios with more UEs. The harmonic mean alone reduced false positives for the OR fusion from 100% to 60% without significantly impact- ing false negatives in the scenario with 100 UEs and 10 attackers. When both techniques are used together, the rate of false positives fall to 5% while false negatives increase to 18%. Scenarios with less UEs and distributed in clusters tend to have higher false negative rates when both techniques are used, but false positives are consistently lower than other classical fusions (e.g. 2-out-of-N, 3-out-of-N and AND). The Markov chain technique effectively reduced the sensing report rate by 2 orders of magnitude, saving up scarce control bandwidth. These results allow us to conclude that the both techniques are effective for the rural scenario they were proposed

    Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks

    Get PDF
    Due to the explosive growth of mobile data traffic and the shortage of spectral resources, 5G networks are envisioned to have a densified heterogeneous network (HetNet) architecture, combining multiple radio access technologies (multi-RATs) into a single holistic network. The co-existing of multi-tier architectures bring new challenges, especially on resource management and security provisioning, due to the lack of common interface and consistent policy across HetNets. In this thesis, we aim to address the technical challenges of data traffic management, coordinated spectrum sharing and security provisioning in 5G HetNets through the introduction of a programmable management platform based on Software-defined networking (SDN). To address the spectrum shortage problem in cellular networks, cellular data traffic is efficiently offloaded to the Wi-Fi network, and the quality of service of user applications is guaranteed with the proposed delay tolerance based partial data offloading algorithm. A two-layered information collection is also applied to best load balancing decision-making. Numerical results show that the proposed schemes exploit an SDN controller\u27s global view of the HetNets and take optimized resource allocation decisions. To support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks (VANET), SDN-enabled adaptive vehicle clustering algorithm is proposed based on the real-time road traffic condition collected from HetNet infrastructure. Traffic offloading is achieved within each cluster and dynamic beamformed transmission is also applied to improve trunk link communication quality. To further achieve a coordinated spectrum sharing across HetNets, an SDN enabled orchestrated spectrum sharing scheme that integrates participating HetNets into an amalgamated network through a common configuration interface and real-time information exchange is proposed. In order to effectively protect incumbent users, a real-time 3D interference map is developed to guide the spectrum access based on the SDN global view. MATLAB simulations confirm that average interference at incumbents is reduced as well as the average number of denied access. Moreover, to tackle the contradiction between more stringent latency requirement of 5G and the potential delay induced by frequent authentications in 5G small cells and HetNets, an SDN-enabled fast authentication scheme is proposed in this thesis to simplify authentication handover, through sharing of user-dependent secure context information (SCI) among related access points. The proposed SCI is a weighted combination of user-specific attributes, which provides unique fingerprint of the specific device without additional hardware and computation cost. Numerical results show that the proposed non-cryptographic authentication scheme achieves comparable security with traditional cryptographic algorithms, while reduces authentication complexity and latency especially when network load is high

    Location Privacy-Preserving Strategies for Secondary Spectrum Use

    Get PDF
    The scarcity of wireless spectrum resources and the overwhelming demand for wireless broadband resources have prompted industry, government agencies and academia within the wireless communities to develop and come up with effective solutions that can make additional spectrum available for broadband data. As part of these ongoing efforts, cognitive radio networks (CRNs) have emerged as an essential technology for enabling and promoting dynamic spectrum access and sharing, a paradigm primarily aimed at addressing the spectrum scarcity and shortage challenges by permitting and enabling unlicensed or secondary users (SUs) to freely search, locate and exploit unused licensed spectrum opportunities. Despite their great potentials for improving spectrum utilization efficiency and for addressing the spectrum shortage problem, CRNs suffer from serious location privacy issues, which essentially tend to disclose the location information of the SUs to other system entities during their usage of these open spectrum opportunities. Knowing that their whereabouts may be exposed, SUs can be discouraged from joining and participating in the CRNs, potentially hindering the adoption and deployment of this technology. In this thesis, we propose frameworks that are suitable for CRNs, but also preserve the location privacy information of these SU s. More specifically, 1. We propose location privacy-preserving protocols that protect the location privacy of SUs in cooperative sensing-based CRNs while allowing the SUs to perform their spectrum sensing tasks reliably and effectively. Our proposed protocols allow also the detection of malicious user activities through the adoption of reputation mechanisms. 2. We propose location privacy-preserving approaches that provide information-theoretic privacy to SU s’ location in database-driven CRNs through the exploitation of the structured nature of spectrum databases and the fact that database-driven CRNs, by design, rely on multiple spectrum databases. 3. We propose a trustworthy framework for new generation of spectrum access systems in the 3.5 GHz band that not only protects SUs’ privacy, but also ensures that they comply with the unique system requirements, while allowing the detection of misbehaving users

    Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms

    Get PDF
    The realm of cloud computing has revolutionized access to cloud resources and their utilization and applications over the Internet. However, deploying cloud computing for delay critical applications and reducing the delay in access to the resources are challenging. The Mobile Edge Computing (MEC) paradigm is one of the effective solutions, which brings the cloud computing services to the proximity of the edge network and leverages the available resources. This paper presents a survey of the latest and state-of-the-art algorithms, techniques, and concepts of MEC. The proposed work is unique in that the most novel algorithms are considered, which are not considered by the existing surveys. Moreover, the chosen novel literature of the existing researchers is classified in terms of performance metrics by describing the realms of promising performance and the regions where the margin of improvement exists for future investigation for the future researchers. This also eases the choice of a particular algorithm for a particular application. As compared to the existing surveys, the bibliometric overview is provided, which is further helpful for the researchers, engineers, and scientists for a thorough insight, application selection, and future consideration for improvement. In addition, applications related to the MEC platform are presented. Open research challenges, future directions, and lessons learned in area of the MEC are provided for further future investigation

    A Game-theoretic Model for Regulating Freeriding in Subsidy-Based Pervasive Spectrum Sharing Markets

    Get PDF
    Cellular spectrum is a limited natural resource becoming scarcer at a worrisome rate. To satisfy users\u27 expectation from wireless data services, researchers and practitioners recognized the necessity of more utilization and pervasive sharing of the spectrum. Though scarce, spectrum is underutilized in some areas or within certain operating hours due to the lack of appropriate regulatory policies, static allocation and emerging business challenges. Thus, finding ways to improve the utilization of this resource to make sharing more pervasive is of great importance. There already exists a number of solutions to increase spectrum utilization via increased sharing. Dynamic Spectrum Access (DSA) enables a cellular operator to participate in spectrum sharing in many ways, such as geological database and cognitive radios, but these systems perform spectrum sharing at the secondary level (i.e., the bands are shared if and only if the primary/licensed user is idle) and it is questionable if they will be sufficient to meet the future expectations of the spectral efficiency. Along with the secondary sharing, spectrum sharing among primary users is emerging as a new domain of future mode of pervasive sharing. We call this type of spectrum sharing among primary users as pervasive spectrum sharing (PSS) . However, such spectrum sharing among primary users requires strong incentives to share and ensuring a freeriding-free cellular market. Freeriding in pervasively shared spectrum markets (be it via government subsidies/regulations or self-motivated coalitions among cellular operators) is a real techno-economic challenge to be addressed. In a PSS market, operators will share their resources with primary users of other operators and may sometimes have to block their own primary users in order to attain sharing goals. Small operators with lower quality service may freeride on large operators\u27 infrastructure in such pervasively shared markets. Even worse, since small operators\u27 users may perceive higher-than-expected service quality for a lower fee, this can cause customer loss to the large operators and motivate small operators to continue freeriding with additional earnings from the stolen customers. Thus, freeriding can drive a shared spectrum market to an unhealthy and unstable equilibrium. In this work, we model the freeriding by small operators in shared spectrum markets via a game-theoretic framework. We focus on a performance-based government incentivize scheme and aim to minimize the freeriding issue emerging in such PSS markets. We present insights from the model and discuss policy and regulatory challenges

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/
    corecore