17,207 research outputs found

    How can SMEs benefit from big data? Challenges and a path forward

    Get PDF
    Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state-of-the-art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley & Sons, Ltd.Peer ReviewedPostprint (author's final draft

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Mapping domain characteristics influencing Analytics initiatives: The example of Supply Chain Analytics

    Get PDF
    Purpose: Analytics research is increasingly divided by the domains Analytics is applied to. Literature offers little understanding whether aspects such as success factors, barriers and management of Analytics must be investigated domain-specific, while the execution of Analytics initiatives is similar across domains and similar issues occur. This article investigates characteristics of the execution of Analytics initiatives that are distinct in domains and can guide future research collaboration and focus. The research was conducted on the example of Logistics and Supply Chain Management and the respective domain-specific Analytics subfield of Supply Chain Analytics. The field of Logistics and Supply Chain Management has been recognized as early adopter of Analytics but has retracted to a midfield position comparing different domains. Design/methodology/approach: This research uses Grounded Theory based on 12 semi-structured Interviews creating a map of domain characteristics based of the paradigm scheme of Strauss and Corbin. Findings: A total of 34 characteristics of Analytics initiatives that distinguish domains in the execution of initiatives were identified, which are mapped and explained. As a blueprint for further research, the domain-specifics of Logistics and Supply Chain Management are presented and discussed. Originality/value: The results of this research stimulates cross domain research on Analytics issues and prompt research on the identified characteristics with broader understanding of the impact on Analytics initiatives. The also describe the status-quo of Analytics. Further, results help managers control the environment of initiatives and design more successful initiatives.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations

    Get PDF
    While supply chain analytics shows promise regarding value, benefits, and increase in performance for logistics and supply chain management (LSCM) organizations, those organizations are often either reluctant to invest or unable to achieve the returns they aspire to. This article systematically explores the barriers LSCM organizations experience in employing supply chain analytics that contribute to such reluctance and unachieved returns and measures to overcome these barriers. This article therefore aims to systemize the barriers and measures and allocate measures to barriers in order to provide organizations with directions on how to cope with their individual barriers. By using Grounded Theory through 12 in-depth interviews and Q-Methodology to synthesize the intended results, this article derives core categories for the barriers and measures, and their impacts and relationships are mapped based on empirical evidence from various actors along the supply chain. Resultingly, the article presents the core categories of barriers and measures, including their effect on different phases of the analytics solutions life cycle, the explanation of these effects, and accompanying examples. Finally, to address the intended aim of providing directions to organizations, the article provides recommendations for overcoming the identified barriers in organizations

    The Advantages of Artificial Intelligence in Operational Decision Making

    Get PDF
    This research paper explores the advantages of artificial intelligence (AI) in operational decision making, focusing on the analysis of production processes, supply chains, and resources. The research highlights several advantages of AI in operational decision making. It empowers organizations to make data-driven decisions, reducing reliance on human intuition and biases. AI technologies can process vast amounts of data in real-time, enabling timely decision-making and facilitating agile operations. Moreover, AI can learn from historical data and continuously improve decision-making processes, leading to enhanced performance over time. The research method employed in this study is utilizing literature review as the data collection method. The literature review involved searching for relevant theories and examining findings from previous researchers, which served as the foundation for developing the analysis to discuss the research outcomes. This research underscores the significant advantages of AI in operational decision making, specifically in the areas of production processes, supply chains, and resource management. By leveraging AI technologies, organizations can achieve improved efficiency, reduced costs, and better overall performance. The findings of this study contribute to a better understanding of the transformative potential of AI and encourage its adoption in various operational domains
    • …
    corecore