1,376 research outputs found

    Connected component identification and cluster update on GPU

    Full text link
    Cluster identification tasks occur in a multitude of contexts in physics and engineering such as, for instance, cluster algorithms for simulating spin models, percolation simulations, segmentation problems in image processing, or network analysis. While it has been shown that graphics processing units (GPUs) can result in speedups of two to three orders of magnitude as compared to serial codes on CPUs for the case of local and thus naturally parallelized problems such as single-spin flip update simulations of spin models, the situation is considerably more complicated for the non-local problem of cluster or connected component identification. I discuss the suitability of different approaches of parallelization of cluster labeling and cluster update algorithms for calculations on GPU and compare to the performance of serial implementations.Comment: 15 pages, 14 figures, one table, submitted to PR

    Patch-based semantic labelling of images.

    Get PDF
    PhDThe work presented in this thesis is focused at associating a semantics to the content of an image, linking the content to high level semantic categories. The process can take place at two levels: either at image level, towards image categorisation, or at pixel level, in se- mantic segmentation or semantic labelling. To this end, an analysis framework is proposed, and the different steps of part (or patch) extraction, description and probabilistic modelling are detailed. Parts of different nature are used, and one of the contributions is a method to complement information associated to them. Context for parts has to be considered at different scales. Short range pixel dependences are accounted by associating pixels to larger patches. A Conditional Random Field, that is, a probabilistic discriminative graphical model, is used to model medium range dependences between neighbouring patches. Another contribution is an efficient method to consider rich neighbourhoods without having loops in the inference graph. To this end, weak neighbours are introduced, that is, neighbours whose label probability distribution is pre-estimated rather than mutable during the inference. Longer range dependences, that tend to make the inference problem intractable, are addressed as well. A novel descriptor based on local histograms of visual words has been proposed, meant to both complement the feature descriptor of the patches and augment the context awareness in the patch labelling process. Finally, an alternative approach to consider multiple scales in a hierarchical framework based on image pyramids is proposed. An image pyramid is a compositional representation of the image based on hierarchical clustering. All the presented contributions are extensively detailed throughout the thesis, and experimental results performed on publicly available datasets are reported to assess their validity. A critical comparison with the state of the art in this research area is also presented, and the advantage in adopting the proposed improvements are clearly highlighted

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    Hyperspectral Image Unmixing Incorporating Adjacency Information

    Get PDF
    While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials’ spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature

    Get PDF
    Crop canopy temperature measurement is necessary for monitoring water stress indicators such as the Crop Water Stress Index (CWSI). Water stress indicators are very useful for irrigation strategies management in the precision agriculture context. For this purpose, one of the techniques used is thermography, which allows remote temperature measurement. However, the applicability of these techniques depends on being affordable, allowing continuous monitoring over multiple field measurement. In this article, the development of a sensor capable of automatically measuring the crop canopy temperature by means of a low-cost thermal camera and the implementation of artificial intelligence-based image segmentation models is presented. In addition, we provide results on almond trees comparing our system with a commercial thermal camera, in which an R-squared of 0.75 is obtained.This research was funded by the Agencia Estatal de Investigación (AEI) under project numbers: AGL2016-77282-C3-3-R, and PID2019-106226-C22 AEI/https://doi.org//10.13039/501100011033. FPU17/05155, FPU19/00020 have been granted by Ministerio de Educación y Formación Profesional. The authors would like to acknowledge the support of Miriam Montoya Gómez in language assistance

    Probabilistic segmentation of remotely sensed images

    Get PDF
    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.Bayesian image classifiers calculate class posterior probabilities on the basis of estimated class probability densities and prior probabilities. This thesis presents refined probability estimates, which are local, i.e pertain to image regions, rather than to the entire image. Local class probability densities are estimated in a non-parametric way with an extended k-Nearest Neighbor method. Iterative estimation of class mixing proportions in arbitrary image regions yields local prior probabilities.The improved estimates of prior probabilities and probability densities increase the reliability of posterior probabilities and enhance subsequent decision making, such as maximum posterior probability class selection. Moreover, class areas are estimated more accurately, compared to standard Maximum Likelihood classification.Two sources of image regionalization are distinguished. Ancillary data in geographic information systems often divide the image area into regions with different class mixing proportions, in which probabilities are estimated. Otherwise, a regionalization can be obtained by image segmentation. A region based method is presented, being a generalization of connected component labeling in the quadtree domain. It recursively merges leaves in a quadtree representation of a multi-spectral image into segments with arbitrary shapes and sizes. Order dependency is avoided by applying the procedure iteratively with slowly relaxing homogeneity criteria.Region fragmentation and region merging, caused by spectral variation within objects and spectral similarity between adjacent objects, are avoided by regarding class homogeneity in addition to spectral homogeneity. As expected, most terrain objects correspond to image segments. These, however, reside at different levels in a segmentation pyramid. Therefore, class mixing proportions are estimated in all segments of such a pyramid to distinguish between pure and mixed ones. Pure segments are selected at the highest possible level, which may vary over the image. They form a non-overlapping set of labeled objects without fragmentation or merging. In image areas where classes cannot be separated, because of spatial or spectral resolution limitations, mixed segments are selected from the pyramid. They form uncertain objects, to which a mixture of classes with known proportion is assigned.Subsequently, remotely sensed data are used for taking decisions in geographical information systems. These decisions are usually based on crisp classifications and, therefore, influenced by classification errors and uncertainties. Moreover, when processing spatial data for decision making, the objectives and preferences of the decision maker are crucial to deal with. This thesis proposes to exploit mathematical decision analysis for integrating uncertainties and preferences, on the basis of carefully estimated probabilistic class information. It aims to solve complex decision problems on the basis of remotely sensed data.</p
    corecore