115 research outputs found

    JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Get PDF
    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States

    AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Get PDF
    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists

    AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Get PDF
    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference will focus on understanding high-temperature superconductivity with special emphases on materials issues and applications. AMSAHTS '90, will highlight the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC will be discussed by NASA and Navy specialists

    Solid State Technology Branch of NASA Lewis Research Center

    Get PDF
    Reprints of one year's production of research publications (June 1990 to June 1991) are presented. These are organized into three major sections: microwave circuits, both hybrid and monolithic microwave integrated circuits (MMICs); materials and device work; and superconductivity. The included papers also cover more specific topics involving waveguides, phase array antennas, dielectrics, and high temperature superconductors

    Experimental design for the evaluation of high-T(sub c) superconductive thermal bridges in a sensor satellite

    Get PDF
    Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis

    AC Loss and Thickness Dependence of Critical Currents in Coated Conductors

    Get PDF
    This program of research is directed toward understanding the physical properties of certain materials in superconductive ā€œcoated conductors.ā€ Specifically investigated were Ni1āˆ’xWx alloys for use as substrate and thin films of YBa 2Cu3O7, a high- Tc superconductor with many attractive features. A study has been conducted on the magnetic properties of a series of biaxially textured Ni1āˆ’xWx materials with compositions x = 0, 3, 5, 6, and 9 at.% W. These materials are important as substrates for ā€œRABiTSā€-type coated conductors that incorporate high temperature superconductors for current transport. The quasi-static dc and ac hysteretic loss W was determined to support estimates of the ferromagnetic contribution to the overall ac loss in potential ac applications. The alloys were prepared by either vacuum casting or powder metallurgy methods, and the hysteretic loss tended to be lower in materials that were recrystallized at higher temperatures. Some samples were progressively deformed to simulate winding operations; this increased the hysteretic loss, as did sample cutting operations that create localized damage. In ac magnetization measurements, the effects of ac frequency and dc bias field on the ferromagnetic loss were determined. Furthermore, in order to better understand the complex problem of vortex pinning and the identification of defects that support the critical current density Jc in these ā€œRABiTSā€-type coated conductors, we have made magnetometric studies of the Jc flowing in thin YBa2Cu3O7āˆ’d (YBCO) films of various thicknesses d, both as a function of applied field and temperature T. The films, grown by a BaF2 ex - situ process and deposited on bufferedā€œRABiTSā€ substrates of Ni-5%W, have thicknesses d ranging from 28 nm to1.5Ī¼m. Isothermal magnetization loops M(H; T) and remanent magnetization Mrem(T) in zero applied field H = 0, were measured with H c-axis (i.e., normal to film plane). The Jc(d) values, which were obtained from a modified critical state model, increase with thickness, peak near a particular thickness, and thereafter decrease as the films get thicker. For a wide range of temperatures and intermediate fields, we find a power law falloff Jc āˆ Hāˆ’Ī² with Ī² āˆ¼ (0.56 - 0.69) for all materials. This feature compares well with the power-law exponent Ī² = 5/8 obtained theoretically by Ovchinnikov and Ivlev for pinning by large random defects, as are observed by TEM. Comparison of the theoretical predictions with experimental Jc(H, T, d) yields a mostly consistent picture, using values for the size and density of defects that are comparable with those deduced from TEM images. Finally, for higher temperatures approaching the irreversibility line, we find J(T, sf) āˆ (1 āˆ’ T/Tc)n with n āˆ¼ 1.1 - 1.3. This points to ā€œĪ“Tc inningā€ (pinning that suppresses Tc locally) in all of these YBCO materials, as expected for the observed large, non-superconducting defects

    Engineering Properties of Superconducting Materials

    Get PDF
    Plastic (and microplastic) pollution has been described as one of the greatest environmental challenges of our time, and a hallmark of the human-driven epoch known as the Anthropocene. It has gained the attention of the general public, governments, and environmental scientists worldwide. To date, the main focus has been on plastics in the marine environment, but interest in the presence and effects of plastics in freshwaters has increased in the recent years. The occurrence of plastics within inland lakes and rivers, as well as their biota, has been demonstrated. Experiments with freshwater organisms have started to explore the direct and indirect effects resulting from plastic exposure. There is a clear need for further research, and a dedicated space for its dissemination. This book is devoted to highlighting current research from around the world on the prevalence, fate, and effects of plastic in freshwater environments
    • ā€¦
    corecore