27 research outputs found

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    A New Framework for Decomposing Multivariate Information

    Get PDF
    What are the distinct ways in which a set of predictor variables can provide information about a target variable? When does a variable provide unique information, when do variables share redundant information, and when do variables combine synergistically to provide complementary information? The redundancy lattice from the partial information decomposition of Williams and Beer provided a promising glimpse at the answer to these questions. However, this structure was constructed using a much-criticised measure of redundant information, and despite sustained research, no completely satisfactory replacement measure has been proposed. This thesis presents a new framework for information decomposition that is based upon the decomposition of pointwise mutual information rather than mutual information. The framework is derived in two separate ways. The first of these derivations is based upon a modified version of the original axiomatic approach taken by Williams and Beer. However, to overcome the difficulty associated with signed pointwise mutual information, the decomposition is applied separately to the unsigned entropic components of pointwise mutual information which are referred to as the specificity and ambiguity. This yields a separate redundancy lattice for each component. Based upon an operational interpretation of redundancy, measures of redundant specificity and redundant ambiguity are defined which enables one to evaluate the partial information atoms separately for each lattice. These separate atoms can then be recombined to yield the sought-after multivariate information decomposition. This framework is applied to canonical examples from the literature and the results and various properties of the decomposition are discussed. In particular, the pointwise decomposition using specificity and ambiguity is shown to satisfy a chain rule over target variables, which provides new insights into the so-called two-bit-copy example. The second approach begins by considering the distinct ways in which two marginal observers can share their information with the non-observing individual third party. Several novel measures of information content are introduced, namely the union, intersection and unique information contents. Next, the algebraic structure of these new measures of shared marginal information is explored, and it is shown that the structure of shared marginal information is that of a distributive lattice. Furthermore, by using the fundamental theorem of distributive lattices, it is shown that these new measures are isomorphic to a ring of sets. Finally, by combining this structure together with the semi-lattice of joint information, the redundancy lattice form partial information decomposition is found to be embedded within this larger algebraic structure. However, since this structure considers information contents, it is actually equivalent to the specificity lattice from the first derivation of pointwise partial information decomposition. The thesis then closes with a discussion about whether or not one should combine the information contents from the specificity and ambiguity lattices

    On the number of essential arguments of homomorphisms between products of median algebras

    Get PDF
    International audienceIn this paper we characterize classes of median-homomorphisms between products of median algebras, that depend on a given number of arguments, by means of necessary and sufficent conditions that rely on the underlying algebraic and on the underlying order structure of median algebras. In particular, we show that a median-homomorphism that take values in a median algebra that does not contain a subalgebra isomorphic to the m-dimensional Boolean algebra as a subalgebra cannot depend on more than m − 1 arguments. In view of this result, we also characterize the latter class of median algebras. We also discuss extensions of our framework on homomorphisms over median algebras to wider classes of algebras

    On homomorphisms between products of median algebras

    Get PDF
    International audienceHomorphisms of products of median algebras are studied with particular attention to the case when the codomain is a tree. In particular, we show that all mappings from a product A1×⋯×An\mathbf{A}_1\times \cdots \times \mathbf{A}_n of median algebras to a median algebra B\mathbf{B} are essentially unary whenever the codomain B\mathbf{B} is a tree. In view of this result, we also characterize trees as median algebras and semilattices by relaxing the defining conditions of conservative median algebras

    Conservative median algebras and semilattices

    Get PDF
    We characterize conservative median algebras and semilattices by means of forbidden substructures and by providing their representation as chains. Moreover, using a dual equivalence between median algebras and certain topological structures, we obtain descriptions of the median-preserving mappings between products of finitely many chains

    On a special class of median algebras

    Get PDF
    International audienceIn this short note we consider a class of median algebras, called (1, 2 : 3)-semilattices, that is pertaining to cluster analysis. Such median algebras arise from a natural generalization of conservativeness, and their description is given in terms of forbidden substructures
    corecore