17 research outputs found

    Information flow properties for cyber-physical systems

    Get PDF
    In cyber-physical systems, which are the integrations of computational and physical processes, security properties are difficult to enforce. Fundamentally, physically observable behavior leads to violations of confidentiality. This work analyzes certain noninterference based security properties to ensure that interactions between the cyber and physical processes preserve confidentiality. A considerable barrier to this analysis is the representation of physical system interactions at the cyber-level. This thesis presents encoding of these physical system properties into a discrete event system and represents the cyber-physical system using Security Process Algebra (SPA). The model checker, Checker of Persistent Security (CoPS) shows Bisimulation based NonDeducibility on Compositions (BNDC) properties, which are a variant of noninterference properties, to check the system\u27s security against all potential high-level interactions. This work considers a model problem of invariant pipeline flow to examine the BNDC properties and their applicability for cyber-physical systems--Abstract, page iii

    Quantification of information flow in cyber physical systems

    Get PDF
    In Cyber Physical Systems (CPSs), traditional security mechanisms such as cryptography and access control are not enough to ensure the security of the system since complex interactions between the cyber portion and physical portion happen frequently. In particular, the physical infrastructure is inherently observable; aggregated physical observations can lead to unintended cyber information leakage. Information flow analysis, which aims to control the way information flows among different entities, is better suited for CPSs than the access control security mechanism. However, quantifying information leakage in CPSs can be challenging due to the flow of implicit information between the cyber portion, the physical portion, and the outside world. Within algorithmic theory, the online problem considers inputs that arrive one by one and deals with extracting the algorithmic solution through an advice tape without knowing some parts of the input. This dissertation focuses on statistical methods to quantify information leakage in CPSs due to algorithmic leakages, especially CPSs that allocate constrained resources. The proposed framework is based on the advice tape concept of algorithmically quantifying information leakage and statistical analysis. With aggregated physical observations, the amount of information leakage of the constrained resource due to the cyber algorithm can be quantified through the proposed algorithms. An electric smart grid has been used as an example to develop confidence intervals of information leakage within a real CPS. The characteristic of the physical system, which is represented as an invariant, is also considered and influences the information quantification results. The impact of this work is that it allows the user to express an observer\u27s uncertainty about a secret as a function of the revealed part. Thus, it can be used as an algorithmic design in a CPS to allocate resources while maximizing the uncertainty of the information flow to an observer --Abstract, page iii

    CEEME: compensating events based execution monitoring enforcement for Cyber-Physical Systems

    Get PDF
    Fundamentally, inherently observable events in Cyber-Physical Systems with tight coupling between cyber and physical components can result in a confidentiality violation. By observing how the physical elements react to cyber commands, adversaries can identify critical links in the system and force the cyber control algorithm to make erroneous decisions. Thus, there is a propensity for a breach in confidentiality leading to further attacks on availability or integrity. Due to the highly integrated nature of Cyber-Physical Systems, it is also extremely difficult to map the system semantics into a security framework under existing security models. The far-reaching objective of this research is to develop a science of selfobfuscating systems based on the composition of simple building blocks. A model of Nondeducibility composes the building blocks under Information Flow Security Properties. To this end, this work presents fundamental theories on external observability for basic regular networks and the novel concept of event compensation that can enforce Information Flow Security Properties at runtime --Abstract, page iii

    Verification of information flow security in cyber-physical systems

    Get PDF
    With a growing number of real-world applications that are dependent on computation, securing the information space has become a challenge. The security of information in such applications is often jeopardized by software and hardware failures, intervention of human subjects such as attackers, incorrect design specification and implementation, other social and natural causes. Since these applications are very diverse, often cutting across disciplines a generic approach to detect and mitigate these issues is missing. This dissertation addresses the fundamental problem of verifying information security in a class of real world applications of computation, the Cyber-physical systems (CPSs). One of the motivations for this work is the lack of a unified theory to specify and verify the complex interactions among various cyber and physical processes within a CPS. Security of a system is fundamentally characterized by the way information flows within the system. Information flow within a CPS is dependent on the physical response of the system and associated cyber control. While formal techniques of verifying cyber security exist, they are not directly applicable to CPSs due to their inherent complexity and diversity. This Ph.D. research primarily focuses on developing a uniform framework using formal tools of process algebras to verify security properties in CPSs. The merits in adopting such an approach for CPS analyses are three fold- i) the physical and continuous aspects and the complex CPS interactions can be modeled in a unified way, and ii) the problem of verifying security properties can be reduced to the problem of establishing suitable equivalences among the processes, and iii) adversarial behavior and security properties can be developed using the features like compositionality and process equivalence offered by the process algebras --Abstract, page iii

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Cryptographically sound analysis of security protocols

    Get PDF
    In this thesis, we show how formal methods can be used for the cryptographically sound verification of concrete implementations of security protocols in order to obtain trustworthy and meaningful proofs, and to eliminate human inaccuracies. First, we show how to derive secure concrete implementations of a given abstract specification. The security proofs are essentially based on the well-established approach of bisimulation which can be formally verified yielding rigorous proofs. As an example, we present both a specification and a secure implementation of secure message transmission with ordered channels. Moreover, the example comprises a general methodology how secure implementation of arbitrary specifications can be obtained. Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we define integrity properties in our underlying model and we show that logic derivations among them carry over specification to the concrete implementation, which makes them accessible for tool-assisted verification. As an example, we formally verify one concrete protocol using the theorem prover PVS yielding the first machine-aided and sound proof of a cryptographic protocol. As additional properties of security protocols, we consider liveness and noninterference. The standard definition of these properties is not suited to cope with protocols involving real cryptographic primitives, so we introduce new definitions which are restricted to polynomial runs and include error probabilities. We show that both properties carry over from the specification to the concrete implementation, and we present two examples, one for each property, which we prove to fulfill our definitions.Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,maschinell verifizierte Beweise zu ermöglichen, die die kryptographische Semantik respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den kryptographischen Sicherheitsdefinitionen gültig sind (engl. cryptographically sound proofs).Als erstes zeigen wir, wie formale Methoden benutzt werden können, um sichere konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzuleiten. Wir geben dafür eine allgemeingültige Methodologie an, die auf formal verifizierten Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als Beispiel geben wir eine Spezifikation und eine konkrete Implementation für sichere geordnete Nachrichtenübertragung an. Die im Sicherheitsbeispiel der Implementation auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS. Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll erfüllen soll. Wir definieren Integritätseigenschaften in unserem zugrundeliegenden Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigenschaften von der Spezifikation auf die Implementation übertragen, was eine essentielle Voraussetzung für maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Beweis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch der kryptographischen Semantik "treu'; bleibt, d.h., der wirklich ein Beweis gegen die kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist. Als zusätzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Lebendigkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die Standarddefinition dieser wichtigen Eigenschaften als ungeeignet für echte Kryptographie herausstellt, führen wir allgemeinere Definitionen ein, die auf polynomielle Länge beschränkt sind und Fehlerwahrscheinlichkeiten berücksichtigen.Wir zeigen, dass sich diese Eigenschaften von der Spezifikation auf die Implementation übertragen,was wiederum den Bezug zu formalen Methoden herstellt. Wir präsentieren zwei Beispiele, je eines für jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Definition erfüllen

    Cryptographically sound analysis of security protocols

    Get PDF
    In this thesis, we show how formal methods can be used for the cryptographically sound verification of concrete implementations of security protocols in order to obtain trustworthy and meaningful proofs, and to eliminate human inaccuracies. First, we show how to derive secure concrete implementations of a given abstract specification. The security proofs are essentially based on the well-established approach of bisimulation which can be formally verified yielding rigorous proofs. As an example, we present both a specification and a secure implementation of secure message transmission with ordered channels. Moreover, the example comprises a general methodology how secure implementation of arbitrary specifications can be obtained. Thereafter, we concentrate on the actual goals the protocol should fulfill. Thus, we define integrity properties in our underlying model and we show that logic derivations among them carry over specification to the concrete implementation, which makes them accessible for tool-assisted verification. As an example, we formally verify one concrete protocol using the theorem prover PVS yielding the first machine-aided and sound proof of a cryptographic protocol. As additional properties of security protocols, we consider liveness and noninterference. The standard definition of these properties is not suited to cope with protocols involving real cryptographic primitives, so we introduce new definitions which are restricted to polynomial runs and include error probabilities. We show that both properties carry over from the specification to the concrete implementation, and we present two examples, one for each property, which we prove to fulfill our definitions.Diese Arbeit behandelt formale Verifikation von Sicherheitsprotokollen mit dem Ziel,maschinell verifizierte Beweise zu ermöglichen, die die kryptographische Semantik respektieren, d.h., deren Aussagen bzgl. der zugrundeliegenden Kryptographie und den kryptographischen Sicherheitsdefinitionen gültig sind (engl. cryptographically sound proofs).Als erstes zeigen wir, wie formale Methoden benutzt werden können, um sichere konkrete Implementationen anhand einer gegebenen abstrakten Spezifikation herzuleiten. Wir geben dafür eine allgemeingültige Methodologie an, die auf formal verifizierten Bisimulationen basiert, was uns rigorose und glaubhafte Sicherheitsbeweise liefert. Als Beispiel geben wir eine Spezifikation und eine konkrete Implementation für sichere geordnete Nachrichtenübertragung an. Die im Sicherheitsbeispiel der Implementation auftretende Bisimulation verifizieren wir mit Hilfe des Theorembeweisers PVS. Als zweites konzentrieren wir uns auf die Ziele, die ein Sicherheitsprotokoll erfüllen soll. Wir definieren Integritätseigenschaften in unserem zugrundeliegenden Modell, und wir beweisen, dass sich logische Schlussfolgerungen bzgl. dieser Eigenschaften von der Spezifikation auf die Implementation übertragen, was eine essentielle Voraussetzung für maschinelle Verifikation darstellt. Als Beispiel verifizieren wir ein konkretes Protokoll mit Hilfe des Theorembeweisers PVS, was uns den ersten Beweis eines Sicherheitsprotokolls liefert, der sowohl maschinell verifiziert ist als auch der kryptographischen Semantik "treu\u27; bleibt, d.h., der wirklich ein Beweis gegen die kryptographischen Primitive und deren kryptographische Sicherheitsdefinitionen ist. Als zusätzliche Eigenschaften von Sicherheitsprotokollen betrachten wir Lebendigkeit (engl. liveness) und Unbeeinflussbarkeit (engl. non-interference). Da sich die Standarddefinition dieser wichtigen Eigenschaften als ungeeignet für echte Kryptographie herausstellt, führen wir allgemeinere Definitionen ein, die auf polynomielle Länge beschränkt sind und Fehlerwahrscheinlichkeiten berücksichtigen.Wir zeigen, dass sich diese Eigenschaften von der Spezifikation auf die Implementation übertragen,was wiederum den Bezug zu formalen Methoden herstellt. Wir präsentieren zwei Beispiele, je eines für jede Eigenschaft, von denen wir beweisen, dass sie die entsprechende Definition erfüllen
    corecore