1,023 research outputs found

    Contextual emergence of intentionality

    Full text link
    By means of an intriguing physical example, magnetic surface swimmers, that can be described in terms of Dennett's intentional stance, I reconstruct a hierarchy of necessary and sufficient conditions for the applicability of the intentional strategy. It turns out that the different levels of the intentional hierarchy are contextually emergent from their respective subjacent levels by imposing stability constraints upon them. At the lowest level of the hierarchy, phenomenal physical laws emerge for the coarse-grained description of open, nonlinear, and dissipative nonequilibrium systems in critical states. One level higher, dynamic patterns, such as, e.g., magnetic surface swimmers, are contextually emergent as they are invariant under certain symmetry operations. Again one level up, these patterns behave apparently rational by selecting optimal pathways for the dissipation of energy that is delivered by external gradients. This is in accordance with the restated Second Law of thermodynamics as a stability criterion. At the highest level, true believers are intentional systems that are stable under exchanging their observation conditions.Comment: 27 pages; 4 figures (Fig 1. Copyright by American Physical Society); submitted to Journal of Consciousness Studie

    Spurious, Emergent Laws in Number Worlds

    Full text link
    We study some aspects of the emergence of logos from chaos on a basal model of the universe using methods and techniques from algorithmic information and Ramsey theories. Thereby an intrinsic and unusual mixture of meaningful and spurious, emerging laws surfaces. The spurious, emergent laws abound, they can be found almost everywhere. In accord with the ancient Greek theogony one could say that logos, the Gods and the laws of the universe, originate from "the void," or from chaos, a picture which supports the unresolvable/irreducible lawless hypothesis. The analysis presented in this paper suggests that the "laws" discovered in science correspond merely to syntactical correlations, are local and not universal.Comment: 24 pages, invited contribution to "Contemporary Natural Philosophy and Philosophies - Part 2" - Special Issue of the journal Philosophie

    The low noise phase of a 2d active nematic

    Full text link
    We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the 2d fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist though now with strong finite-size effects and a non-universal scaling exponent. Nonlinear effects from the active currents lead to power law correlations in the density field thereby preventing macroscopic phase separation in the thermodynamic limit.Comment: 17 pages, 5 figure

    Generating functional analysis of complex formation and dissociation in large protein interaction networks

    Full text link
    We analyze large systems of interacting proteins, using techniques from the non-equilibrium statistical mechanics of disordered many-particle systems. Apart from protein production and removal, the most relevant microscopic processes in the proteome are complex formation and dissociation, and the microscopic degrees of freedom are the evolving concentrations of unbound proteins (in multiple post-translational states) and of protein complexes. Here we only include dimer-complexes, for mathematical simplicity, and we draw the network that describes which proteins are reaction partners from an ensemble of random graphs with an arbitrary degree distribution. We show how generating functional analysis methods can be used successfully to derive closed equations for dynamical order parameters, representing an exact macroscopic description of the complex formation and dissociation dynamics in the infinite system limit. We end this paper with a discussion of the possible routes towards solving the nontrivial order parameter equations, either exactly (in specific limits) or approximately.Comment: 14 pages, to be published in Proc of IW-SMI-2009 in Kyoto (Journal of Phys Conference Series
    • …
    corecore