33,682 research outputs found

    Conservation Rules of Direct Sum Decomposition of Groups

    Get PDF
    In this article, conservation rules of the direct sum decomposition of groups are mainly discussed. In the first section, we prepare miscellaneous definitions and theorems for further formalization in Mizar [5]. In the next three sections, we formalized the fact that the property of direct sum decomposition is preserved against the substitutions of the subscript set, flattening of direct sum, and layering of direct sum, respectively. We referred to [14], [13] [6] and [11] in the formalization.Nakasho Kazuhisa - Shinshu University Nagano, JapanYamazaki Hiroshi - Shinshu University Nagano, JapanOkazaki Hiroyuki - Shinshu University Nagano, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics, 7(1):127-134, 1998.Serge Lang. Algebra. Springer, 3rd edition, 2005.Kazuhisa Nakasho, Hiroshi Yamazaki, Hiroyuki Okazaki, and Yasunari Shidama. Definition and properties of direct sum decomposition of groups. Formalized Mathematics, 23 (1):15-27, 2015. doi:10.2478/forma-2015-0002.D. Robinson. A Course in the Theory of Groups. Springer New York, 2012.J.J. Rotman. An Introduction to the Theory of Groups. Springer, 1995.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5): 855-864, 1990.Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990

    Operator bases, SS-matrices, and their partition functions

    Full text link
    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where SS-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the SS-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis--correspondingly, the SS-matrix--and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n=5n=5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of nn-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the SS-matrix in the form of soft limits. The most na\"ive implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations.Comment: 75 pages plus appendice

    Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology

    Full text link
    Lagrangian contact supersymmetries (depending on derivatives of arbitrary order) are treated in very general setting. The cohomology of the variational bicomplex on an arbitrary graded manifold and the iterated cohomology of a generic nilpotent contact supersymmetry are computed. In particular, the first variational formula and conservation laws for Lagrangian systems on graded manifolds using contact supersymmetries are obtained.Comment: 28 pp., appears in 'Communications in Mathematical Physics

    Simple-Current Symmetries, Rank-Level Duality, and Linear Skein Relations for Chern-Simons Graphs

    Full text link
    A previously proposed two-step algorithm for calculating the expectation values of Chern-Simons graphs fails to determine certain crucial signs. The step which involves calculating tetrahedra by solving certain non- linear equations is repaired by introducing additional linear equations. As a first step towards a new algorithm for general graphs we find useful linear equations for those special graphs which support knots and links. Using the improved set of equations for tetrahedra we examine the symmetries between tetrahedra generated by arbitrary simple currents. Along the way we uncover the classical origin of simple-current charges. The improved skein relations also lead to exact identities between planar tetrahedra in level KK G(N)G(N) and level NN G(K)G(K) CS theories, where G(N)G(N) denotes a classical group. These results are recast as identities for quantum 6j6j-symbols and WZW braid matrices. We obtain the transformation properties of arbitrary graphs and links under simple current symmetries and rank-level duality. For links with knotted components this requires precise control of the braid eigenvalue permutation signs, which we obtain from plethysm and an explicit expression for the (multiplicity free) signs, valid for all compact gauge groups and all fusion products.Comment: 58 pages, BRX-TH-30

    On the Brownian gas: a field theory with a Poissonian ground state

    Full text link
    As a first step towards a successful field theory of Brownian particles in interaction, we study exactly the non-interacting case, its combinatorics and its non-linear time-reversal symmetry. Even though the particles do not interact, the field theory contains an interaction term: the vertex is the hallmark of the original particle nature of the gas and it enforces the constraint of a strictly positive density field, as opposed to a Gaussian free field. We compute exactly all the n-point density correlation functions, determine non-perturbatively the Poissonian nature of the ground state and emphasize the futility of any coarse-graining assumption for the derivation of the field theory. We finally verify explicitly, on the n-point functions, the fluctuation-dissipation theorem implied by the time-reversal symmetry of the action.Comment: 31 page

    A Rigorous Proof of Fermi Liquid Behavior for Jellium Two-Dimensional Interacting Fermions

    Full text link
    Using the method of continuous constructive renormalization group around the Fermi surface, it is proved that a jellium two-dimensional interacting system of Fermions at low temperature TT remains analytic in the coupling constant λ\lambda for λlogTK|\lambda| |\log T| \le K where KK is some numerical constant and TT is the temperature. Furthermore in that range of parameters, the first and second derivatives of the self-energy remain bounded, a behavior which is that of Fermi liquids and in particular excludes Luttinger liquid behavior. Our results prove also that in dimension two any transition temperature must be non-perturbative in the coupling constant, a result expected on physical grounds. The proof exploits the specific momentum conservation rules in two dimensions.Comment: 4 pages, no figure

    The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

    Full text link
    We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical data structures and linear algebra manipulation routines involved, which form the core libraries of any tensor network code. At a higher level, we put the spotlight on loop-free network geometries, discussing their advantages, and presenting in detail algorithms to simulate low-energy equilibrium states. Accompanied by discussions of data structures, numerical techniques and performance, this anthology serves as a programmer's companion, as well as a self-contained introduction and review of the basic and selected advanced concepts in tensor networks, including examples of their applications.Comment: 115 pages, 56 figure
    corecore