1,826 research outputs found

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Consensus of second-order multi-agent systems with delayed nonlinear dynamics and intermittent communications

    Get PDF
    This article investigates the second-order consensus problem of multi-agent systems with inherent delayed nonlinear dynamics and intermittent communications. Each agent is assumed to obtain the measurements of relative states between its own and the neighbours' only at a sequence of disconnected time intervals. A new kind of protocol based only on the intermittent measurements of neighbouring agents is proposed to guarantee the states of agents to reach second-order consensus under a fixed strongly connected and balanced topology. By constructing a common Lyapunov function, it is shown that consensus can be reached if the general algebraic connectivity and communication time duration are larger than their corresponding threshold values, respectively. Finally, simulation examples are provided to verify the effectiveness of the theoretical analysis

    Coordination of multi-agent systems: stability via nonlinear Perron-Frobenius theory and consensus for desynchronization and dynamic estimation.

    Get PDF
    This thesis addresses a variety of problems that arise in the study of complex networks composed by multiple interacting agents, usually called multi-agent systems (MASs). Each agent is modeled as a dynamical system whose dynamics is fully described by a state-space representation. In the first part the focus is on the application to MASs of recent results that deal with the extensions of Perron-Frobenius theory to nonlinear maps. In the shift from the linear to the nonlinear framework, Perron-Frobenius theory considers maps being order-preserving instead of matrices being nonnegative. The main contribution is threefold. First of all, a convergence analysis of the iterative behavior of two novel classes of order-preserving nonlinear maps is carried out, thus establishing sufficient conditions which guarantee convergence toward a fixed point of the map: nonnegative row-stochastic matrices turns out to be a special case. Secondly, these results are applied to MASs, both in discrete and continuous-time: local properties of the agents' dynamics have been identified so that the global interconnected system falls into one of the above mentioned classes, thus guaranteeing its global stability. Lastly, a sufficient condition on the connectivity of the communication network is provided to restrict the set of equilibrium points of the system to the consensus points, thus ensuring the agents to achieve consensus. These results do not rely on standard tools (e.g., Lyapunov theory) and thus they constitute a novel approach to the analysis and control of multi-agent dynamical systems. In the second part the focus is on the design of dynamic estimation algorithms in large networks which enable to solve specific problems. The first problem consists in breaking synchronization in networks of diffusively coupled harmonic oscillators. The design of a local state feedback that achieves desynchronization in connected networks with arbitrary undirected interactions is provided. The proposed control law is obtained via a novel protocol for the distributed estimation of the Fiedler vector of the Laplacian matrix. The second problem consists in the estimation of the number of active agents in networks wherein agents are allowed to join or leave. The adopted strategy consists in the distributed and dynamic estimation of the maximum among numbers locally generated by the active agents and the subsequent inference of the number of the agents that took part in the experiment. Two protocols are proposed and characterized to solve the consensus problem on the time-varying max value. The third problem consists in the average state estimation of a large network of agents where only a few agents' states are accessible to a centralized observer. The proposed strategy projects the dynamics of the original system into a lower dimensional state space, which is useful when dealing with large-scale systems. Necessary and sufficient conditions for the existence of a linear and a sliding mode observers are derived, along with a characterization of their design and convergence properties
    corecore