3,077 research outputs found

    Consensus on homogeneous manifolds

    Full text link
    peer reviewedThe present paper considers distributed consensus algorithms for agents evolving on a connected compact homogeneous (CCH) manifold. The agents track no external reference and communicate their relative state according to an interconnection graph. The paper first formalizes the consensus problem for synchronization (i.e. maximizing the consensus) and balancing (i.e. minimizing the consensus); it thereby introduces the induced arithmetic mean, an easily computable mean position on CCH manifolds. Then it proposes and analyzes various consensus algorithms on manifolds: natural gradient algorithms which reach local consensus equilibria; an adaptation using auxiliary variables for almost-global synchronization or balancing; and a stochastic gossip setting for global synchronization. It closes by investigating the dependence of synchronization properties on the attraction function between interacting agents on the circle. The theory is also illustrated on SO(n) and on the Grassmann manifolds

    Consensus optimization on manifolds

    Full text link
    The present paper considers distributed consensus algorithms that involve N agents evolving on a connected compact homogeneous manifold. The agents track no external reference and communicate their relative state according to a communication graph. The consensus problem is formulated in terms of the extrema of a cost function. This leads to efficient gradient algorithms to synchronize (i.e., maximizing the consensus) or balance (i.e., minimizing the consensus) the agents; a convenient adaptation of the gradient algorithms is used when the communication graph is directed and time-varying. The cost function is linked to a specific centroid definition on manifolds, introduced here as the induced arithmetic mean, that is easily computable in closed form and may be of independent interest for a number of manifolds. The special orthogonal group SO(n) and the Grassmann manifold Grass(p,n) are treated as original examples. A link is also drawn with the many existing results on the circle

    Riemannian consensus for manifolds with bounded curvature

    Full text link
    Consensus algorithms are popular distributed algorithms for computing aggregate quantities, such as averages, in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements lie in Euclidean space. In this work we propose Riemannian consensus, a natural extension of existing averaging consensus algorithms to the case of Riemannian manifolds. Unlike previous generalizations, our algorithm is intrinsic and, in principle, can be applied to any complete Riemannian manifold. We give sufficient convergence conditions on Riemannian manifolds with bounded curvature and we analyze the differences with respect to the Euclidean case. We test the proposed algorithms on synthetic data sampled from the space of rotations, the sphere and the Grassmann manifold.This work was supported by the grant NSF CNS-0834470. Recommended by Associate Editor L. Schenato. (CNS-0834470 - NSF
    corecore