41,520 research outputs found

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi

    Cooperation of Multi-agent Systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.The cooperation of multi-agent systems represents that a group of agents complete the common tasks that are difficult or impossible for an individual agent or a single system to finish. The cooperation of multi-agent systems has received considerable attention and has been widely studied over the past few years. The consensus is the basis of the cooperation of multi-agent systems. Researching the cooperation of multi-agent systems probably involves a large number of theories, such as graph theories and stability theories of switched systems. In this thesis, we study consensus, tracking control, and containment control under a fixed graph. For a time-invariant network of multi-agent systems, its topological characteristic can be described by a fixed graph. For the time-variant network, we model the multi-agent systems by switched systems in this thesis and get some new conclusions. We transform the consensus problems into stability problems first and then get some new conclusions by the aid of conventional methods. For traditional approaches, there are many limitations. Many of the involved theories also need to be further improved. For example, the stability problems of switched systems have not yet been thoroughly resolved. Therefore, we also do much research work on stability analysis of switched systems. For switched systems, we propose some novel theories and methods to reduce the limitations of conventional stability analysis methods. We propose some sequence-based methods to resolve the stability problems and get some new results. It is proved that the switched systems are globally uniformly asymptotically stable when the sequence-based mode-dependence average dwell time satisfies the conditions deduced by this thesis. We use the proposed stability theories and methods to analyse the consensus of multi-agent systems under switched systems and get some new results. A proposed model transformation can transform consensus problems into stability problems. We get some novel results. In this thesis, we first introduce the background and then give a brief literature review on the stability analysis of switched systems and the cooperation of multi-agent systems. After that, Chapter 3 addresses multi-agent systems under a fixed topology. The research on the stability of switched systems is presented in Chapter 4. A consensus of second-order multi-agent systems under switched topologies based on the sequence is studied in Chapter 5. The research plan, progress, and our publications on this research topic are also shown in this report. Finally, we summarize my past work and give a conclusion

    Consensus analysis of multi-agent systems under switching topologies by a topology-dependent average dwell time approach

    Full text link
    © The Institution of Engineering and Technology 2016. This study addresses the consensus problem for a class of any order multi-agent systems under switching topologies which could include kinds of unconsensusable topologies. The consensus problem, depending on structure properties and the corresponding topology, is researched with fixed structure properties under directed switching topologies. By the properties of Laplacian matrix, the consensus problem for multi-agent systems is converted into the stability problem of the corresponding switched systems with a Laplacian-like matrix. Some sufficient conditions for consensus are presented by using the dwell time approach. Finally, numerical examples and the results of computer simulation are given to verify the theoretical analysis

    Stability analysis for continuous-time switched systems with stochastic switching signals

    Get PDF
    This paper is concerned with the stability problem of randomly switched systems. By using the probability analysis method, the almost surely globally asymptotical stability and almost surely exponential stability are investigated for switched systems with semi-Markovian switching, Markovian switching and renewal process switching signals, respectively. Two examples are presented to demonstrate the effectiveness of the proposed results, in which an example of consensus of multi-agent systems with nonlinear dynamics is taken into account

    Consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method

    Full text link
    © 2018 Elsevier B.V. This paper studies the consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method. Since faults and mismatches can result in failure of the consensus even for a fixed topology with a spanning tree, how to reach a consensus is a complicated and challenging problem under such circumstances especially when part topologies have no spanning tree. Although some works studied the influence of faults and mismatches on the consensus, there is little work on reaching a consensus for the multi-agent systems with faults and mismatches. In this paper, we introduce the delta operator to unify the consensus analysis for continuous, discrete, or sampled systems under one framework. We develop the theories on the delta operator systems first and then apply theories of the delta operator systems to the consensus problems. By converting the consensus problems into stability problems, we investigate and prove consensus and the associated conditions for systems 1) without any fault, 2) with a known fault, and 3) with unknown faults, under switching topologies with matching or mismatching coefficients. Numerical examples are provided and validate the effectiveness of the theoretical results

    COOPERATIVE AND CONSENSUS-BASED CONTROL FOR A TEAM OF MULTI-AGENT SYSTEMS

    Get PDF
    Cooperative control has attracted a noticeable interest in control systems community due to its numerous applications in areas such as formation flying of unmanned aerial vehicles, cooperative attitude control of spacecraft, rendezvous of mobile robots, unmanned underwater vehicles, traffic control, data network congestion control and routing. Generally, in any cooperative control of multi-agent systems one can find a set of locally sensed information, a communication network with limited bandwidth, a decision making algorithm, and a distributed computational capability. The ultimate goal of cooperative systems is to achieve consensus or synchronization throughout the team members while meeting all communication and computational constraints. The consensus problem involves convergence of outputs or states of all agents to a common value and it is more challenging when the agents are subjected to disturbances, measurement noise, model uncertainties or they are faulty. This dissertation deals with the above mentioned challenges and has developed methods to design distributed cooperative control and fault recovery strategies in multi-agent systems. Towards this end, we first proposed a transformation for Linear Time Invariant (LTI) multi-agent systems that facilitates a systematic control design procedure and make it possible to use powerful Lyapunov stability analysis tool to guarantee its consensus achievement. Moreover, Lyapunov stability analysis techniques for switched systems are investigated and a novel method is introduced which is well suited for designing consensus algorithms for switching topology multi-agent systems. This method also makes it possible to deal with disturbances with limited root mean square (RMS) intensities. In order to decrease controller design complexity, a iii method is presented which uses algebraic connectivity of the communication network to decouple augmented dynamics of the team into lower dimensional parts, which allows one to design the consensus algorithm based on the solution to an algebraic Riccati equation with the same order as that of agent. Although our proposed decoupling method is a powerful approach to reduce the complexity of the controller design, it is possible to apply classical pole placement methods to the transformed dynamics of the team to develop and obtain controller gains. The effects of actuator faults in consensus achievement of multi-agent systems is investigated. We proposed a framework to quantitatively study actuator loss-of-effectiveness effects in multi-agent systems. A fault index is defined based on information on fault severities of agents and communication network topology, and sufficient conditions for consensus achievement of the team are derived. It is shown that the stability of the cooperative controller is linked to the fault index. An optimization problem is formulated to minimize the team fault index that leads to improvements in the performance of the team. A numerical optimization algorithm is used to obtain the solutions to the optimal problem and based on the solutions a fault recovery strategy is proposed for both actuator saturation and loss-of-effectiveness fault types. Finally, to make our proposed methodology more suitable for real life scenarios, the consensus achievement of a multi-agent team in presence of measurement noise and model uncertainties is investigated. Towards this end, first a team of LTI agents with measurement noise is considered and an observer based consensus algorithm is proposed and shown that the team can achieve H∞ output consensus in presence of both bounded RMS disturbance input and measurement noise. In the next step a multi-agent team with both linear and Lipschitz nonlinearity uncertainties is studied and a cooperative control algorithm is developed. An observer based approach is also developed to tackle consensus achievement problem in presence of both measurement noise and model uncertainties

    On the stability, stabilizability and control of certain classes of Positive Systems

    Get PDF
    In this thesis stability, stabilizability and other control issues for certain classes of Positive Systems are investigated. In the first part, the focus is on Compartmental Systems: we start from Compartmental Switched Systems and show that, with respect to the general class of Positive Switched Systems, a much clearer picture of stability under arbitrary switching, stability under persistent switching, and stabilizability (where the control action may either pertain the switching function or involve the design of feedback controllers) can be drawn. Secondly, for the class of Compartmental Multi-Input Systems the problem of designing a state-feedback matrix that preserves the compartmental property of the resulting closed-loop system, meanwhile achieving asymptotic stability is addressed. Such an analysis finally leads to the development of an algorithm that allows to assess problem solvability and provides a possible solution whenever it exists. The second part of the thesis is devoted to the Positive Consensus Problem: for a homogeneous Positive Multi-Agent System we investigate the problem of determining a state-feedback law that can be individually implemented by each agent, preserves the positivity of the overall system, and leads to the achievement of consensus. Finally, for a particular class of Positive Bilinear Systems that arises in drugs concentration design for HIV treatment, we address the problem of determining an optimal constant input that stabilizes the system while maximizing its robustness against the presence of the external disturbance
    corecore