173 research outputs found

    Containment Control of Multi-Agent Systems with Dynamic Leaders Based on a PInPI^n-Type Approach

    Full text link
    This paper studies the containment control problem of multi-agent systems with multiple dynamic leaders in both the discrete-time domain and the continuous-time domain. The leaders' motions are described by (n−1)(n-1)-order polynomial trajectories. This setting makes practical sense because given some critical points, the leaders' trajectories are usually planned by the polynomial interpolations. In order to drive all followers into the convex hull spanned by the leaders, a PInPI^n-type (PP and II are short for {\it Proportion} and {\it Integration}, respectively; InI^n implies that the algorithm includes high-order integral terms) containment algorithm is proposed. It is theoretically proved that the PInPI^n-type containment algorithm is able to solve the containment problem of multi-agent systems where the followers are described by any order integral dynamics. Compared with the previous results on the multi-agent systems with dynamic leaders, the distinguished features of this paper are that: (1) the containment problem is studied not only in the continuous-time domain but also in the discrete-time domain while most existing results only work in the continuous-time domain; (2) to deal with the leaders with the (n−1)(n-1)-order polynomial trajectories, existing results require the follower's dynamics to be nn-order integral while the followers considered in this paper can be described by any-order integral; and (3) the "sign" function is not employed in the proposed algorithm, which avoids the chattering phenomenon. Furthermore, in order to illustrate the practical value of the proposed approach, an application, the containment control of multiple mobile robots is studied. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed algorithm

    A Review of Consensus-based Multi-agent UAV Applications

    Get PDF
    In this paper, a review of distributed control for multi-agent systems is proposed, focusing on consensus-based applications. Both rotary-wing and fixed-wing Unmanned Aerial Vehicles (UAVs) are considered. On one side, methodologies and implementations based on collision and obstacle avoidance through consensus are analyzed for multirotor UAVs. On the other hand, a target tracking through consensus is considered for fixed-wing UAVs. This novel approach to classify the literature could help researchers to assess the outcomes achieved in these two directions in view of potential practical implementations of consensus-based methodologies

    On leaderless consensus of fractional-order nonlinear multi-agent systems via event-triggered control

    Get PDF
    The consensus problem of fractional-order multi-agent systems is investigated by eventtriggered control in this paper. Based on the graph theory and the Lyapunov functional approach, the conditions for guaranteeing the consensus are derived. Then, according to some basic theories of fractional-order differential equation and some properties of Mittag–Leffler function, the Zeno behavior could be excluded. Finally, a simulation example is given to check the effectiveness of the theoretical result

    Problems in Control, Estimation, and Learning in Complex Robotic Systems

    Get PDF
    In this dissertation, we consider a range of different problems in systems, control, and learning theory and practice. In Part I, we look at problems in control of complex networks. In Chapter 1, we consider the performance analysis of a class of linear noisy dynamical systems. In Chapter 2, we look at the optimal design problems for these networks. In Chapter 3, we consider dynamical networks where interactions between the networks occur randomly in time. And in the last chapter of this part, in Chapter 4, we look at dynamical networks wherein coupling between the subsystems (or agents) changes nonlinearly based on the difference between the state of the subsystems. In Part II, we consider estimation problems wherein we deal with a large body of variables (i.e., at large scale). This part starts with Chapter 5, in which we consider the problem of sampling from a dynamical network in space and time for initial state recovery. In Chapter 6, we consider a similar problem with the difference that the observations instead of point samples become continuous observations that happen in Lebesgue measurable observations. In Chapter 7, we consider an estimation problem in which the location of a robot during the navigation is estimated using the information of a large number of surrounding features and we would like to select the most informative features using an efficient algorithm. In Part III, we look at active perception problems, which are approached using reinforcement learning techniques. This part starts with Chapter 8, in which we tackle the problem of multi-agent reinforcement learning where the agents communicate and classify as a team. In Chapter 9, we consider a single agent version of the same problem, wherein a layered architecture replaces the architectures of the previous chapter. Then, we use reinforcement learning to design the meta-layer (to select goals), action-layer (to select local actions), and perception-layer (to conduct classification)

    Fault Detection and Isolation in Controlled Multi-Robot Systems

    Get PDF
    Multi-Agent Systems (MASs) have attracted much popularity, since the previous decade due to their potential wide range of applications. Indeed, connected MASs are deployed in order to achieve more complex objectives that could otherwise not be achievable by a single agent. In distributed schemes, agents must share their information with their neighbours, which are then used for common control and fault detection purposes, and thus do not require any central monitoring unit. This translates into the necessity to develop efficient distributed algorithms in terms of robustness and safety. Indeed, the problem of safety in connected cooperative MASs has arisen as a consequence of their complexity and the nature of their operations and wireless communication exchanges, which renders them vulnerable to not only physical faults, but also to cyber-attacks. The main focus of this thesis is the study of distributed fault and attack detection and isolation in connected MASs. First, a distributed methodology for global detection of actuator faults in a class of linear MASs with unknown disturbances is proposed using a cascade of fixed-time Sliding Mode Observers (SMOs), where each agent having access to their state, and neighbouring information exchanges, can give an exact estimate of the state of the overall MAS. An LMI-based approach is then applied to design distributed global robust residual signals at each agent capable of detecting faults anywhere in the network. This is then extended to agents with nonlinear nonholonomic dynamics where a new distributed robust Fault Detection and Isolation (FDI) scheme is proposed using predefined-time stability techniques to derive adequate distributed SMOs. This enables to reconstruct the global system state in a predefined-time and generate proper residual signals. The case of MASs with higher order integrator dynamics, where only the first state variable is measurable and the topology is switching is investigated, where a new approach to identify faults and deception attacks is introduced. The proposed protocol makes an agent act as a central node monitoring the whole system activities in a distributed fashion whereby a bank of distributed predefined-time SMOs for global state estimation are designed, which are then used to generate residual signals capable of identifying cyber-attacks despite the switching topology. The problem of attack and FDI in connected heterogeneous MASs with directed graphs, is then studied. First, the problem of distributed fault detection for a team of heterogeneous MASs with linear dynamics is investigated, where a new output observer scheme is proposed which is effective for both directed and undirected topologies. The main advantage of this approach is that the design, being dependant only on the input-output relations, renders the computational cost, information exchange and scalability very effective compared to other FDI approaches that employ the whole state estimation of the agents and their neighbours as a basis for their design. A more general model is then studied, where actuator, sensor and communication faults/attacks are considered in the robust detection and isolation process for nonlinear heterogeneous MASs with measurement noise, dynamic disturbances and communication parameter uncertainties, where the topology is not required to be undirected. This is done using a distributed finite-frequency mixed H_/H1 nonlinear UIO-based approach. Simulation examples are given for each of the proposed algorithms to show their effectiveness and robustness

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Practical Coordination of Multi-Vehicle Systems in Formation

    Get PDF
    This thesis considers the cooperation and coordination of multi vehicle systems cohesively in order to keep the formation geometry and provide the string stability. We first present the modeling of aerial and road vehicles representing different motion characteristics suitable for cooperative operations. Then, a set of three dimensional cohesive motion coordination and formation control schemes for teams of autonomous vehicles is proposed. The two main components of these schemes are i) platform free high level online trajectory generation algorithms and ii) individual trajectory tracking controllers. High level algorithms generate the desired trajectories for three dimensional leader-follower structured tight formations, and then distributed controllers provide the individual control of each agent for tracking the desired trajectories. The generic goal of the control scheme is to move the agents while maintaining the formation geometry. We propose a distributed control scheme to solve this problem utilizing the notions of graph rigidity and persistence as well as techniques of virtual target tracking and smooth switching. The distributed control scheme is developed by modeling the agent kinematics as a single-velocity integrator; nevertheless, extension to the cases with simplified kinematic and dynamic models of fixed-wing autonomous aerial vehicles and quadrotors is discussed. The cohesive cooperation in three dimensions is so beneficial for surveillance and reconnaissance activities with optimal geometries, operation security in military activities, more viable with autonomous flying, and future aeronautics aspects, such as fractionated spacecraft and tethered formation flying. We then focus on motion control task modeling for three dimensional agent kinematics and considering parametric uncertainties originated from inertial measurement noise. We design an adaptive controller to perform the three dimensional motion control task, paying attention to the parametric uncertainties, and employing a recently developed immersion and invariance based scheme. Next, the cooperative driving of road vehicles in a platoon and string stability concepts in one-dimensional traffic are discussed. Collaborative driving of commercial vehicles has significant advantages while platooning on highways, including increased road-capacity and reduced traffic congestion in daily traffic. Several companies in the automotive sector have started implementing driver assistance systems and adaptive cruise control (ACC) support, which enables implementation of high level cooperative algorithms with additional softwares and simple electronic modifications. In this context, the cooperative adaptive cruise control approach are discussed for specific urban and highway platooning missions. In addition, we provide details of vehicle parameters, mathematical models of control structures, and experimental tests for the validation of our models. Moreover, the impact of vehicle to vehicle communication in the existence of static road-side units are given. Finally, we propose a set of stability guaranteed controllers for highway platooning missions. Formal problem definition of highway platooning considering constant and velocity dependent spacing strategies, and formal string stability analysis are included. Additionally, we provide the design of novel intervehicle distance based priority coefficient of feed-forward filter for robust platooning. In conclusion, the importance of increasing level of autonomy of single agents and platoon topology is discussed in performing cohesive coordination and collaborative driving missions and in mitigating sensory errors. Simulation and experimental results demonstrate the performance of our cohesive motion and string stable controllers, in addition we discuss application in formation control of autonomous multi-agent systems
    • …
    corecore