1,612 research outputs found

    Distributed Stochastic Subgradient Optimization Algorithms Over Random and Noisy Networks

    Full text link
    We study distributed stochastic optimization by networked nodes to cooperatively minimize a sum of convex cost functions. The network is modeled by a sequence of time-varying random digraphs with each node representing a local optimizer and each edge representing a communication link. We consider the distributed subgradient optimization algorithm with noisy measurements of local cost functions' subgradients, additive and multiplicative noises among information exchanging between each pair of nodes. By stochastic Lyapunov method, convex analysis, algebraic graph theory and martingale convergence theory, it is proved that if the local subgradient functions grow linearly and the sequence of digraphs is conditionally balanced and uniformly conditionally jointly connected, then proper algorithm step sizes can be designed so that all nodes' states converge to the global optimal solution almost surely

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Problems in Control, Estimation, and Learning in Complex Robotic Systems

    Get PDF
    In this dissertation, we consider a range of different problems in systems, control, and learning theory and practice. In Part I, we look at problems in control of complex networks. In Chapter 1, we consider the performance analysis of a class of linear noisy dynamical systems. In Chapter 2, we look at the optimal design problems for these networks. In Chapter 3, we consider dynamical networks where interactions between the networks occur randomly in time. And in the last chapter of this part, in Chapter 4, we look at dynamical networks wherein coupling between the subsystems (or agents) changes nonlinearly based on the difference between the state of the subsystems. In Part II, we consider estimation problems wherein we deal with a large body of variables (i.e., at large scale). This part starts with Chapter 5, in which we consider the problem of sampling from a dynamical network in space and time for initial state recovery. In Chapter 6, we consider a similar problem with the difference that the observations instead of point samples become continuous observations that happen in Lebesgue measurable observations. In Chapter 7, we consider an estimation problem in which the location of a robot during the navigation is estimated using the information of a large number of surrounding features and we would like to select the most informative features using an efficient algorithm. In Part III, we look at active perception problems, which are approached using reinforcement learning techniques. This part starts with Chapter 8, in which we tackle the problem of multi-agent reinforcement learning where the agents communicate and classify as a team. In Chapter 9, we consider a single agent version of the same problem, wherein a layered architecture replaces the architectures of the previous chapter. Then, we use reinforcement learning to design the meta-layer (to select goals), action-layer (to select local actions), and perception-layer (to conduct classification)

    Control Theory-Inspired Acceleration of the Gradient-Descent Method: Centralized and Distributed

    Get PDF
    Mathematical optimization problems are prevalent across various disciplines in science and engineering. Particularly in electrical engineering, convex and non-convex optimization problems are well-known in signal processing, estimation, control, and machine learning research. In many of these contemporary applications, the data points are dispersed over several sources. Restrictions such as industrial competition, administrative regulations, and user privacy have motivated significant research on distributed optimization algorithms for solving such data-driven modeling problems. The traditional gradient-descent method can solve optimization problems with differentiable cost functions. However, the speed of convergence of the gradient-descent method and its accelerated variants is highly influenced by the conditioning of the optimization problem being solved. Specifically, when the cost is ill-conditioned, these methods (i) require many iterations to converge and (ii) are highly unstable against process noise. In this dissertation, we propose novel optimization algorithms, inspired by control-theoretic tools, that can significantly attenuate the influence of the problem's conditioning. First, we consider solving the linear regression problem in a distributed server-agent network. We propose the Iteratively Pre-conditioned Gradient-Descent (IPG) algorithm to mitigate the deleterious impact of the data points' conditioning on the convergence rate. We show that the IPG algorithm has an improved rate of convergence in comparison to both the classical and the accelerated gradient-descent methods. We further study the robustness of IPG against system noise and extend the idea of iterative pre-conditioning to stochastic settings, where the server updates the estimate based on a randomly selected data point at every iteration. In the same distributed environment, we present theoretical results on the local convergence of IPG for solving convex optimization problems. Next, we consider solving a system of linear equations in peer-to-peer multi-agent networks and propose a decentralized pre-conditioning technique. The proposed algorithm converges linearly, with an improved convergence rate than the decentralized gradient-descent. Considering the practical scenario where the computations performed by the agents are corrupted, or a communication delay exists between them, we study the robustness guarantee of the proposed algorithm and a variant of it. We apply the proposed algorithm for solving decentralized state estimation problems. Further, we develop a generic framework for adaptive gradient methods that solve non-convex optimization problems. Here, we model the adaptive gradient methods in a state-space framework, which allows us to exploit control-theoretic methodology in analyzing Adam and its prominent variants. We then utilize the classical transfer function paradigm to propose new variants of a few existing adaptive gradient methods. Applications on benchmark machine learning tasks demonstrate our proposed algorithms' efficiency. Our findings suggest further exploration of the existing tools from control theory in complex machine learning problems. The dissertation is concluded by showing that the potential in the previously mentioned idea of IPG goes beyond solving generic optimization problems through the development of a novel distributed beamforming algorithm and a novel observer for nonlinear dynamical systems, where IPG's robustness serves as a foundation in our designs. The proposed IPG for distributed beamforming (IPG-DB) facilitates a rapid establishment of communication links with far-field targets while jamming potential adversaries without assuming any feedback from the receivers, subject to unknown multipath fading in realistic environments. The proposed IPG observer utilizes a non-symmetric pre-conditioner, like IPG, as an approximation of the observability mapping's inverse Jacobian such that it asymptotically replicates the Newton observer with an additional advantage of enhanced robustness against measurement noise. Empirical results are presented, demonstrating both of these methods' efficiency compared to the existing methodologies

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • โ€ฆ
    corecore