3,917 research outputs found

    Consensus and formation control on SE(3) for switching topologies

    Get PDF
    This paper addresses the consensus problem and the formation problem on in multi-agent systems with directed and switching interconnection topologies. Several control laws are introduced for the consensus problem. By a simple transformation, it is shown that the proposed control laws can be used for the formation problem. The design is first conducted on the kinematic level, where the velocities are the control laws. Then, for rigid bodies in space, the design is conducted on the dynamic level, where the torques and the forces are the control laws. On the kinematic level, first two control laws are introduced that explicitly use Euclidean transformations, then separate control laws are defined for the rotations and the translations. In the special case of purely rotational motion, the consensus problem is referred to as consensus on or attitude synchronization. In this problem, for a broad class of local representations or parameterizations of , including the Axis–Angle Representation, the Rodrigues Parameters and the Modified Rodrigues Parameters, two types of control laws are presented that look structurally the same for any choice of local representation. For these two control laws we provide conditions on the initial rotations and the connectivity of the graph such that the system reaches consensus on . Among the contributions of this paper, there are conditions for when exponential rate of convergence occurs. A theorem is provided showing that for any choice of local representation for the rotations, there is a change of coordinates such that the transformed system has a well known structure

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators
    • …
    corecore