2,014 research outputs found

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Persistence based analysis of consensus protocols for dynamic graph networks

    Full text link
    This article deals with the consensus problem involving agents with time-varying singularities in the dynamics or communication in undirected graph networks. Existing results provide control laws which guarantee asymptotic consensus. These results are based on the analysis of a system switching between piecewise constant and time-invariant dynamics. This work introduces a new analysis technique relying upon classical notions of persistence of excitation to study the convergence properties of the time-varying multi-agent dynamics. Since the individual edge weights pass through singularities and vary with time, the closed-loop dynamics consists of a non-autonomous linear system. Instead of simplifying to a piecewise continuous switched system as in literature, smooth variations in edge weights are allowed, albeit assuming an underlying persistence condition which characterizes sufficient inter-agent communication to reach consensus. The consensus task is converted to edge-agreement in order to study a stabilization problem to which classical persistence based results apply. The new technique allows precise computation of the rate of convergence to the consensus value.Comment: This article contains 7 pages and includes 4 figures. it is accepted in 13th European Control Conferenc

    Exponential Synchronization of Complex Delayed Dynamical Networks With Switching Topology

    Get PDF
    This paper studies the local and global exponential synchronization of a complex dynamical network with switching topology and time-varying coupling delays. By using stability theory of switched systems and the network topology, the synchronization of such a network under some special switching signals is investigated. Firstly, under the assumption that all subnetworks are self-synchronizing, a delay-dependent sufficient condition is given in terms of linear matrix inequalities, which guarantees the solvability of the local synchronization problem under an average dwell time scheme. Then this result is extended to the situation that not all subnetworks are self-synchronizing. For the latter case, in addition to average dwell time, an extra condition on the ratio of the total activation time of self-synchronizing and nonsynchronizing subnetworks is needed to achieve synchronization of the entire switched network. The global synchronization of a network whose isolate dynamics is of a particular form is also studied. Three different examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results. © 2006 IEEE.published_or_final_versio

    Average Consensus in the Presence of Delays and Dynamically Changing Directed Graph Topologies

    Full text link
    Classical approaches for asymptotic convergence to the global average in a distributed fashion typically assume timely and reliable exchange of information between neighboring components of a given multi-component system. These assumptions are not necessarily valid in practical settings due to varying delays that might affect transmissions at different times, as well as possible changes in the underlying interconnection topology (e.g., due to component mobility). In this work, we propose protocols to overcome these limitations. We first consider a fixed interconnection topology (captured by a - possibly directed - graph) and propose a discrete-time protocol that can reach asymptotic average consensus in a distributed fashion, despite the presence of arbitrary (but bounded) delays in the communication links. The protocol requires that each component has knowledge of the number of its outgoing links (i.e., the number of components to which it sends information). We subsequently extend the protocol to also handle changes in the underlying interconnection topology and describe a variety of rather loose conditions under which the modified protocol allows the components to reach asymptotic average consensus. The proposed algorithms are illustrated via examples.Comment: 37 page

    State Consensus Analysis and Design for High-Order Discrete-Time Linear Multiagent Systems

    Get PDF
    The paper deals with the state consensus problem of high-order discrete-time linear multiagent systems (DLMASs) with fixed information topologies. We consider three aspects of the consensus analysis and design problem: (1) the convergence criteria of global state consensus, (2) the calculation of the state consensus function, and (3) the determination of the weighted matrix and the feedback gain matrix in the consensus protocol. We solve the consensus problem by proposing a linear transformation to translate it into a partial stability problem. Based on the approach, we obtain necessary and sufficient criteria in terms of Schur stability of matrices and present an analytical expression of the state consensus function. We also propose a design process to determine the feedback gain matrix in the consensus protocol. Finally, we extend the state consensus to the formation control. The results are explained by several numerical examples
    corecore