775 research outputs found

    Distributed Optimal State Consensus for Multiple Circuit Systems with Disturbance Rejection

    Get PDF
    This paper investigates the distributed optimal state consensus problem for an electronic system with a group of circuit units, where the dynamics of each unit is modeled by a Chua's circuit in the presence of disturbance generated by an external system. By means of the internal model approach and feedback control, a compensator-based continuous-time algorithm is proposed to minimize the sum of all cost functions associated with each individual unit in a cooperative manner. Supported by convex analysis, graph theory and Lyapunov theory, it is proved that the proposed algorithm is exponentially convergent. Compared with the centralized algorithms, the proposed protocol possesses remarkable superiority in improving scalability and reliability of multiple circuit systems. Moreover, we also study the distributed uncertain optimal state consensus problem and a linear regret bound is obtained in this case. Finally, a state synchronization example is provided to validate the effectiveness of the proposed algorithms

    Uncertain Multi-Agent Systems with Distributed Constrained Optimization Missions and Event-Triggered Communications: Application to Resource Allocation

    Full text link
    This paper deals with solving distributed optimization problems with equality constraints by a class of uncertain nonlinear heterogeneous dynamic multi-agent systems. It is assumed that each agent with an uncertain dynamic model has limited information about the main problem and limited access to the information of the state variables of the other agents. A distributed algorithm that guarantees cooperative solving of the constrained optimization problem by the agents is proposed. Via this algorithm, the agents do not need to continuously broadcast their data. It is shown that the proposed algorithm can be useful in solving resource allocation problems

    Fixed-time Distributed Optimization under Time-Varying Communication Topology

    Full text link
    This paper presents a method to solve distributed optimization problem within a fixed time over a time-varying communication topology. Each agent in the network can access its private objective function, while exchange of local information is permitted between the neighbors. This study investigates first nonlinear protocol for achieving distributed optimization for time-varying communication topology within a fixed time independent of the initial conditions. For the case when the global objective function is strictly convex, a second-order Hessian based approach is developed for achieving fixed-time convergence. In the special case of strongly convex global objective function, it is shown that the requirement to transmit Hessians can be relaxed and an equivalent first-order method is developed for achieving fixed-time convergence to global optimum. Results are further extended to the case where the underlying team objective function, possibly non-convex, satisfies only the Polyak-\L ojasiewicz (PL) inequality, which is a relaxation of strong convexity.Comment: 25 page
    • …
    corecore