117,244 research outputs found

    Consciousness, Agents and the Knowledge Game

    Get PDF
    This paper has three goals. The first is to introduce the “knowledge game”, a new, simple and yet powerful tool for analysing some intriguing philosophical questions. The second is to apply the knowledge game as an informative test to discriminate between conscious (human) and conscious-less agents (zombies and robots), depending on which version of the game they can win. And the third is to use a version of the knowledge game to provide an answer to Dretske’s question “how do you know you are not a zombie?”

    Intelligent systems in the context of surrounding environment

    Get PDF
    We investigate the behavioral patterns of a population of agents, each controlled by a simple biologically motivated neural network model, when they are set in competition against each other in the Minority Model of Challet and Zhang. We explore the effects of changing agent characteristics, demonstrating that crowding behavior takes place among agents of similar memory, and show how this allows unique `rogue' agents with higher memory values to take advantage of a majority population. We also show that agents' analytic capability is largely determined by the size of the intermediary layer of neurons. In the context of these results, we discuss the general nature of natural and artificial intelligence systems, and suggest intelligence only exists in the context of the surrounding environment (embodiment). Source code for the programs used can be found at http://neuro.webdrake.net/

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Evolutionary Game Theory

    Get PDF
    Articl

    Avatars Going Mainstream: Typology of Tropes in Avatar-Based Storytelling Practices

    Get PDF
    Due to the growing popularity of video games, gaming itself has become a shared experience among media audiences worldwide. The phenomenon of avatar-based games has led to the emergence of new storytelling practices. The paper proposes a typology of tropes in these avatar-based narratives focusing on non-game case studies. Suggested tropes are also confronted with the latest research on avatars in the area of game studies and current knowledge of the issues concerning the player-avatar relationship. Some of the most popular misconceptions regarding the gameplay experience and its representation in non-game media are exposed as a result of this analysis. The research confirms that popular culture perceives gaming experience as closely related to the player identity, as the latter inspires new genres of non-game narratives
    corecore