40 research outputs found

    Neurotransmitter transporter/receptor co-expression shares organizational traits with brain structure and function

    Get PDF
    The relationship between brain areas based on neurotransmitter receptor and transporter molecule expression patterns may provide a link between brain structure and its function. Here, we studied the organization of the receptome, a measure of regional neurotransmitter receptor/transporter molecule (NTRM) similarity, derived from in vivo PET imaging studies of 19 different receptors and transporters. Nonlinear dimensionality reduction revealed three main spatial gradients of receptor similarity in the cortex. The first gradient differentiated the somato-motor network from the remaining cortex. The second gradient spanned between temporo-occipital and frontal anchors, differentiating visual and limbic networks from attention and control networks, and the third receptome gradient was anchored between the occipital and temporal cortices. In subcortical structures, the receptome delineated a striato-thalamic axis, separating functional communities. Moreover, we observed similar organizational principles underlying receptome differentiation in cortex and subcortex, indicating a link between subcortical and cortical NTRM patterning. Overall, we found that the cortical receptome shared key organizational traits with brain structure and function. Node-level correspondence of receptor similarity to functional, microstructural, and diffusion MRI-based measures decreased along a primary-to-transmodal gradient. Compared to primary and paralimbic regions, we observed higher receptomic diversification in unimodal and heteromodal regions, possibly supporting functional flexibility. In sum, we show how receptor similarity may form an additional organizational layer of human brain architecture, bridging brain structure and function

    mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity.

    Get PDF
    Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism

    Impact of Machine Learning Pipeline Choices in Autism Prediction from Functional Connectivity Data

    Get PDF
    Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction, and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this paper, we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines. Specifically, we consider six brain parcellation definitions, five methods for functional connectivity matrix construction, six feature extraction/selection approaches, and nine classifier building algorithms. We report the prediction performance sensitivity to each of these choices, as well as the best results that are comparable with the state of the art.This work has been partially supported by theFEDER funds through MINECO project TIN2017-85827-P. This project has received funding from theEuropean Union’s Horizon 2020 research and inno-vation program under the Marie Sklodowska-Curiegrant agreement No 77772

    Contributions to the study of Austism Spectrum Brain conectivity

    Get PDF
    164 p.Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this Thesis we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines

    Mapping genome-wide neuropsychiatric mutation effects on functional brain connectivity : c opy number variants delineate dimensions contributing to autism and schizophrenia

    Full text link
    Les recherches menées pour comprendre les troubles du spectre autistique (TSA) et la schizophrénie (SZ) ont communément utilisé une approche dite descendante, partant du diagnostic clinique pour investiguer des phénotypes intermédiaires cérébraux ainsi que des variations génétiques associées. Des études transdiagnostiques récentes ont remis en question ces frontières nosologiques, et suggèrent des mécanismes étiologiques imbriqués. L’approche montante propose de composer des groupes de porteurs d’un même variant génétique afin d’investiguer leur contribution aux conditions neuropsychiatriques (NPs) associées. Les variations du nombre de copies (CNV, perte ou gain d’un fragment d’ADN) figurent parmi les facteurs biologiques les plus associés aux NPs, et sont dès lors des candidats particulièrement appropriés. Les CNVs induisant un risque pour des conditions similaires, nous posons l’hypothèse que des classes entières de CNVs convergent sur des dimensions d’altérations cérébrales qui contribuent aux NPs. L’imagerie fonctionnelle au repos (rs-fMRI) s’est révélée un outil prometteur en psychiatrie, mais presqu’aucune étude n’a été menée pour comprendre l’impact des CNVs sur la connectivité fonctionnelle cérébrale (FC). Nos objectifs étaient de: 1) Caractériser l’effet des CNVs sur la FC; 2) Rechercher la présence des motifs conférés par ces signatures biologiques dans des conditions idiopathiques; 3) Tester si la suppression de gènes intolérants à l’haploinsuffisance réorganise la FC de manière indépendante à leur localisation dans le génome. Nous avons agrégé des données de rs-fMRI chez: 502 porteurs de 8 CNVs associées aux NPs (CNVs-NP), de 4 CNVs sans association établie, ainsi que de porteurs de CNVs-NPs éparses; 756 sujets ayant un diagnostic de TSA, de SZ, ou de trouble déficitaire de l’attention/hyperactivité (TDAH), et 5377 contrôles. Les analyses du connectome entier ont montré un effet de dosage génique positif pour les CNVs 22q11.2 et 1q21.1, et négatif pour le 16p11.2. La taille de l’effet des CNVs sur la FC était corrélée au niveau de risque psychiatrique conféré par le CNV. En accord avec leurs effets sur la cognition, l’effet des délétions sur la FC était plus élevé que celui des duplications. Nous avons identifié des similarités entre les motifs cérébraux conférés par les CNVs-NP, et l’architecture fonctionnelle des individus avec NPs. Le niveau de similarité était associé à la sévérité du CNV, et était plus fort avec la SZ et les TSA qu’avec les TDAH. La comparaison des motifs conférés par les délétions les plus sévères (16p11.2, 22q11.2) à l’échelle fonctionnelle, et d’expression génique, nous a confirmé l’existence présumée de relation entre les mutations elles-mêmes. À l’aide d’une mesure d’intolérance aux mutations (pLI), nous avons pu inclure tous les porteurs de CNVs disponibles, et ainsi identifier un profil d’haploinsuffisance impliquant le thalamus, le cortex antérieur cingulaire, et le réseau somato-moteur, associé à une diminution de mesure d’intelligence générale. Enfin, une analyse d’exploration factorielle nous a permis de confirmer la contribution de ces régions cérébrales à 3 composantes latentes partagées entre les CNVs et les NPs. Nos résultats ouvrent de nouvelles perspectives dans la compréhension des mécanismes polygéniques à l’oeuvre dans les maladies mentales, ainsi que des effets pléiotropiques des CNVs.Research on Autism Spectrum Disorder (ASD) and schizophrenia (SZ) has mainly adopted a ‘top-down’ approach, starting from psychiatric diagnosis, and moving to intermediate brain phenotypes and underlying genetic factors. Recent cross-disorder studies have raised questions about diagnostic boundaries and pleiotropic mechanisms. By contrast, the recruitment of groups based on the presence of a genetic risk factor allows for the investigation of molecular pathways related to a particular risk for neuropsychiatric conditions (NPs). Copy number variants (CNVs, loss or gain of a DNA segment), which confer high risk for NPs are natural candidates to conduct such bottom-up approaches. Because CNVs have a similar range of adverse effects on NPs, we hypothesized that entire classes of CNVs may converge upon shared connectivity dimensions contributing to mental illness. Resting-state functional MRI (rs-fMRI) studies have provided critical insight into the architecture of brain networks involved in NPs, but so far only a few studies have investigated networks modulated by CNVs. We aimed at 1) Delineating the effects of neuropsychiatric variants on functional connectivity (FC), 2) Investigating whether the alterations associated with CNVs are also found among idiopathic psychiatric populations, 3) Testing whether deletions reorganize FC along general dimensions, irrespective of their localization in the genome. We gathered rsfMRI data on 502 carriers of eight NP-CNVs (high-risk), four CNVs without prior association to NPs as well as carriers of eight scarcer NP-CNVs. We also analyzed 756 subjects with idiopathic ASD, SZ, and attention deficit hyperactivity disorder (ADHD), and 5,377 controls. Connectome-wide analyses showed a positive gene dosage effect for the 22q11.2 and 1q21.1 CNVs, and a negative association for the 16p11.2 CNV. The effect size of CNVs on relative FC (mean-connectivity adjusted) was correlated with the known level of NP-risk conferred by CNVs. Consistent with results on cognition, we also reported that deletions had a larger effect size on FC than duplications. We identified similarities between high-risk CNV profiles and the connectivity architecture of individuals with NPs. The level of similarity was associated with mutation severity and was strongest in SZ, followed by ASD, and ADHD. The similarity was driven by the thalamus, and the posterior cingulate cortex, previously identified as hubs in transdiagnostic psychiatric studies. These results raised questions about shared mechanisms across CNVs. By comparing deletions at the 16p11.2 and 22q11.2 loci, we identified similarities at the connectivity, and at the gene expression level. We extended this work by pooling all deletions available for analysis. We asked if connectivity alterations were associated with the severity of deletions scored using pLI, a measure of intolerance to haploinsufficiency. The haploinsufficiency profile involved the thalamus, anterior cingulate cortex, and somatomotor network and was correlated with lower general intelligence and higher autism severity scores in 3 unselected and disease cohorts. An exploratory factor analysis confirmed the contribution of these regions to three latent components shared across CNVs and NPs. Our results open new avenues for understanding polygenicity in psychiatric conditions, and the pleiotropic effect of CNVs on cognition and on risk for neuropsychiatric disorders

    Applications of Gradient Representations in Resting-State fMRI

    Get PDF
    Classical models of brain organization have often considered the brain to be made up of a mosaic of patches that are demarcated by discrete boundaries, often defined histologically. In contrast, emerging views have pointed towards an alternative paradigm – referred to as gradients – by conceptualizing brain organization as sets of organizational axes that characterizes spatial variation of differing connectivity principles over the extent of a region. Such organizational axes provide a well-suited framework for elucidating underpinnings of brain connectivity and has garnered widespread attention across various domains of neuroimaging. This work seeks to explore various applications of gradient estimation techniques, in combination with resting-state functional connectivity data, across the fields of basic, comparative, and clinical neuroscience. First, gradient estimation was performed on resting-state functional connectivity (RSFC) patterns of the primary somatosensory cortex to unveil a secondary organizational axis that spans the region’s anterior-posterior axis, akin to circuitry fundamental to sensory cortical information processing. Second, gradient techniques were used in a cross-species comparison study to unify connectivity principles of humans and marmosets by mapping them simultaneously onto a set of organizational axes. In doing so, this provided a systematic framework to compare the functional architecture of both species, facilitating novel insight of a well-integrated default-mode network in humans, compared to marmosets. Third, connectivity gradients, along with a myriad of other resting-state fMRI features were used to explore the implications of focal lesion pathophysiology on functional organization of the thalamus in individuals with Multiple Sclerosis. A lack of focal changes to resting-state related features was observed suggesting the limited role of focal thalamic lesions to functional organization in MS. Together, these different avenues of research highlight the capacity for a gradient-centric view in neuroimaging to provide profound insights into brain organization, and its utility across the applications of basic, comparative, and clinical neuroscience

    Connectomics across development:towards mapping brain structure from birth to childhood

    Get PDF
    The brain is probably the most complex system of the human body, composed of numerous neural units interconnected at dierent scales. This highly structured architecture provides the ability to communicate, synthesize information and perform the analytical tasks of human beings. Its development starts during the transition between the embryonic and fetal periods, from a simple tubular to a highly complex folded structure. It is globally organized as early as birth. This developing process is highly vulnerable to antenatal adverse conditions. Indeed, extreme prematurity and intra uterine growth restriction are major risk factors for long-term morbidities, including developmental ailments such as cerebral palsy, mental retardation and a wide spectrum of learning disabilities and behavior disorders. In this context, the characterization of the brainâs normative wiring pattern is crucial for our understanding of its architecture and workings, as the origin of many neurological and neurobehavioral disorders is found in early structural brain development. Diusion magnetic resonance imaging (dMRI) allows the in vivo assessment of biological tissues at the microstructural level. It has emerged as a powerful tool to study brain connectivity and analyse the underlying substrate of the human brain, comprising its structurally integrated and functionally specialized architecture. dMRI has been widely used in adult studies. Nevertheless, due to technical constraints, this mapping at earlier stages of development has not yet been accomplished. Yet, this time period is of extreme importance to comprehend the structural and functional integrity of the brain. This thesis is motivated by this shortfall, and intends to fill the gap between the clinical and neuroscience demands and the methodological developments needed to fulfill them. In our work, we comprehensibly study the brain structural connectivity of children born extremely prematurely and/or with additional prenatal restriction at school-age. We provide evidence that brain systems that mature early in development are the most vulnerable to antenatal insults. Interestingly, the alterations highlighted in these systems correlate with the neurobehavioral and cognitive impairments seen in these children at school-age. The overall brain organization appear also altered after preterm birth and prenatal restriction. Indeed, these children show dierent brain network modular topology, with a reduction in the overall network capacity. What remains unclear is whether the alterations seen at school age are already present at birth and, if yes, to what extent. In this thesis we set the technical basis to enable the connectome analysis as early as at birth. This task is challenging when dealing with neonatal data. Indeed, most of the assumptions used in adult data processing methods do not hold, due to the inverted image contrast and other MRI artefacts such as motion, partial volume and intensity inhomogeneities. Here, we propose a novel technique for surface reconstruction, and provide a fully-automatic procedure to delineate the newborn cortical surface, opening the way to establish the newborn connectome
    corecore