1,255 research outputs found

    Connectivity and other invariants of generalized products of graphs

    Get PDF
    Figueroa-Centeno et al. [4] introduced the following product of digraphs let D be a digraph and let G be a family of digraphs such that V (F) = V for every F¿G. Consider any function h:E(D)¿G. Then the product D¿hG is the digraph with vertex set V(D)×V and ((a,x),(b,y))¿E(D¿hG) if and only if (a,b)¿E(D) and (x,y)¿E(h(a,b)). In this paper, we deal with the undirected version of the ¿h-product, which is a generalization of the classical direct product of graphs and, motivated by the ¿h-product, we also recover a generalization of the classical lexicographic product of graphs, namely the °h-product, that was introduced by Sabidussi in 1961. We provide two characterizations for the connectivity of G¿hG that generalize the existing one for the direct product. For G°hG, we provide exact formulas for the connectivity and the edge-connectivity, under the assumption that V (F) = V , for all F¿G. We also introduce some miscellaneous results about other invariants in terms of the factors of both, the ¿h-product and the °h-product. Some of them are easily obtained from the corresponding product of two graphs, but many others generalize the existing ones for the direct and the lexicographic product, respectively. We end up the paper by presenting some structural properties. An interesting result in this direction is a characterization for the existence of a nontrivial decomposition of a given graph G in terms of ¿h-product.Postprint (author's final draft

    ON THE LAPLACIAN SPECTRA OF PRODUCT GRAPHS

    Get PDF
    Graph products and their structural properties have been studied extensively by many researchers. We investigate the Laplacian eigenvalues and eigenvectors of the product graphs for the four standard products, namely, the Cartesian product, the direct product, the strong product and the lexicographic product. A complete characterization of Laplacian spectrum of the Cartesian product of two graphs has been done by Merris. We give an explicit complete characterization of the Laplacian spectrum of the lexicographic product of two graphs using the Laplacian spectra of the factors. For the other two products, we describe the complete spectrum of the product graphs in some particular cases. We supply some new results relating to the algebraic connectivity of the product graphs. We describe the characteristic sets for the Cartesian product and for the lexicographic product of two graphs. As an application we construct new classes of Laplacian integral graphs

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by G∘HG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of G∘HG \circ H, and get upper and lower bounds of λ3(G∘H)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    The generalized 3-connectivity of Lexicographic product graphs

    Full text link
    The generalized kk-connectivity κk(G)\kappa_k(G) of a graph GG, introduced by Chartrand et al., is a natural and nice generalization of the concept of (vertex-)connectivity. In this paper, we prove that for any two connected graphs GG and HH, κ3(G∘H)≥κ3(G)∣V(H)∣\kappa_3(G\circ H)\geq \kappa_3(G)|V(H)|. We also give upper bounds for κ3(G□H)\kappa_3(G\Box H) and κ3(G∘H)\kappa_3(G\circ H). Moreover, all the bounds are sharp.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1103.609
    • …
    corecore