4,255 research outputs found

    Dynamic connectivity in wireless underground sensor networks

    Get PDF
    In wireless underground sensor networks (WUSNs), due to the dynamic underground channel characteristics and the heterogeneous network architecture, the connectivity analysis is much more complicated than in the terrestrial wireless sensor networks and ad hoc networks, which was not addressed before, to our knowledge. In this paper, a mathematical model is developed to analyze the dynamic connectivity in WUSNs, which captures the effects of environmental parameters such as the soil composition and the random soil moisture, and system parameters such as the operating frequency, the sensor burial depth, the sink antenna height, the density of the sensor and sink devices, the tolerable latency of the networks, and the number and the mobility of the above-ground sinks. The lower and upper bounds of the connectivity probability are derived to analytically provide principles and guidelines for the design and deployment of WUSNs in various environmental conditions.US National Science Foundation (NSF) Grant No. CCF-0728889http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7742ai201

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A new wireless underground network system for continuous monitoring of soil water contents

    Get PDF
    A new stand-alone wireless embedded network system has been developed recently for continuous monitoring of soil water contents at multiple depths. This paper presents information on the technical aspects of the system, including the applied sensor technology, the wireless communication protocols, the gateway station for data collection, and data transfer to an end user Web page for disseminating results to targeted audiences. Results from the first test of the network system are presented and discussed, including lessons learned so far and actions to be undertaken in the near future to improve and enhance the operability of this innovative measurement approac

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Environment Aware Connectivity for Wireless Underground Sensor Networks

    Get PDF
    Wireless underground sensor networks (WUSNs) consist of sensors that are buried in and communicate through soil. The channel quality of WUSNs is strongly impacted by environmental parameters such soil moisture. Thus, the communication range of the nodes and the network connectivity vary over time. To address the challenges in underground communication, above ground nodes are deployed to maintain connectivity. In this paper, the connectivity of WUSNs under varying environmental conditions is captured by modeling the cluster size distribution under sub-critical conditions and through a novel aboveground communication coverage model for underground clusters. The resulting connectivity model is utilized to analyze two communication schemes: transmit power control and environmentaware routing, which maintain connectivity while reducing energy consumption. It is shown that transmit power control can maintain network connectivity under all soil moisture values at the cost of energy consumption. Utilizing relays based on soil moisture levels can decrease this energy consumption. A composite of both approaches is also considered to analyze the tradeoff between connectivity and energy consumption

    Environment Aware Connectivity for Wireless Underground Sensor Networks

    Get PDF
    Wireless underground sensor networks (WUSNs) consist of sensors that are buried in and communicate through soil. The channel quality of WUSNs is strongly impacted by environmental parameters such soil moisture. Thus, the communication range of the nodes and the network connectivity vary over time. To address the challenges in underground communication, above ground nodes are deployed to maintain connectivity. In this paper, the connectivity of WUSNs under varying environmental conditions is captured by modeling the cluster size distribution under sub-critical conditions and through a novel aboveground communication coverage model for underground clusters. The resulting connectivity model is utilized to analyze two communication schemes: transmit power control and environmentaware routing, which maintain connectivity while reducing energy consumption. It is shown that transmit power control can maintain network connectivity under all soil moisture values at the cost of energy consumption. Utilizing relays based on soil moisture levels can decrease this energy consumption. A composite of both approaches is also considered to analyze the tradeoff between connectivity and energy consumption
    • …
    corecore