392 research outputs found

    Balancing the trade-off between cost and reliability for wireless sensor networks: a multi-objective optimized deployment method

    Full text link
    The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on https://github.com/iNet-WZU/CMOMPA.Comment: 25 page

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    A Review on Sensor Node Placement Techniques in Wireless Sensor Networks

    Get PDF
    One way to provide Wireless Sensor Network (WSN) with maximum coverage, maximum connectivity, minimum deployment cost and minimum energy consumption is through an effective planning mechanism in arranging an optimum number of sensor nodes. Proper planning will provide a cost-effective deployment by having optimal placements for the sensor nodes. Sensor node placement schemes are needed to accommodate the balance of coverage and energy consumption since closer sensor nodes not only reduces the energy consumption but will result in the network coverage becoming smaller. This paper critically reviews the research and development work done in sensor node placement. Based on the review, the design objectives that need to be considered are identified. Most of the work reviewed focused on two or three design objectives

    Cost-efficient deployment of multi-hop wireless networks over disaster areas using multi-objective meta-heuristics

    Get PDF
    Nowadays there is a global concern with the growing frequency and magnitude of natural disasters, many of them associated with climate change at a global scale. When tackled during a stringent economic era, the allocation of resources to efficiently deal with such disaster situations (e.g., brigades, vehicles and other support equipment for fire events) undergoes severe budgetary limitations which, in several proven cases, have lead to personal casualties due to a reduced support equipment. As such, the lack of enough communication resources to cover the disaster area at hand may cause a risky radio isolation of the deployed teams and ultimately fatal implications, as occurred in different recent episodes in Spain and USA during the last decade. This issue becomes even more dramatic when understood jointly with the strong budget cuts lately imposed by national authorities. In this context, this article postulates cost-efficient multi-hop communications as a technological solution to provide extended radio coverage to the deployed teams over disaster areas. Specifically, a Harmony Search (HS) based scheme is proposed to determine the optimal number, position and model of a set of wireless relays that must be deployed over a large-scale disaster area. The approach presented in this paper operates under a Pareto-optimal strategy, so a number of different deployments is then produced by balancing between redundant coverage and economical cost of the deployment. This information can assist authorities in their resource provisioning and/or operation duties. The performance of different heuristic operators to enhance the proposed HS algorithm are assessed and discussed by means of extensive simulations over synthetically generated scenarios, as well as over a more realistic, orography-aware setup constructed with LIDAR (Laser Imaging Detection and Ranging) data captured in the city center of Bilbao (Spain)

    Distributed Parallel Cooperative Coevolutionary Multi-Objective Large-Scale Immune Algorithm for Deployment of Wireless Sensor Networks

    Get PDF
    Using immune algorithms is generally a time-intensive process especially for problems with a large number of variables. In this paper, we propose a distributed parallel cooperative coevolutionary multi-objective large-scale immune algorithm that is implemented using the message passing interface (MPI). The proposed algorithm is composed of three layers: objective, group and individual layers. First, for each objective in the multi-objective problem to be addressed, a subpopulation is used for optimization, and an archive population is used to optimize all the objectives. Second, the large number of variables are divided into several groups. Finally, individual evaluations are allocated across many core processing units, and calculations are performed in parallel. Consequently, the computation time is greatly reduced. The proposed algorithm integrates the idea of immune algorithms, which tend to explore sparse areas in the objective space and use simulated binary crossover for mutation. The proposed algorithm is employed to optimize the 3D terrain deployment of a wireless sensor network, which is a self-organization network. In experiments, compared with several state-of-the-art multi-objective evolutionary algorithms the Cooperative Coevolutionary Generalized Differential Evolution 3, the Cooperative Multi-objective Differential Evolution and the Nondominated Sorting Genetic Algorithm III, the proposed algorithm addresses the deployment optimization problem efficiently and effectively

    Coverage Improvement In Wireless Sensor Networks Based On Fuzzy-Logic And Genetic Algorithm

    Get PDF
    Wireless sensor networks have been widely considered as one of the most important 21th century technologies and are used in so many applications such as environmental monitoring, security and surveillance. Wireless sensor networks are used when it is not possible or convenient to supply signaling or power supply wires to a wireless sensor node. The wireless sensor node must be battery powered.Coverage and network lifetime are major problems in WSNs so in order to address this difficulty we propose a combinational method consists of fuzzy-logic and genetic algorithms. The proposed scheme detects the coverage holes in the network and selects the most appropriate hole's neighbor to move towards the blank area and compensate the coverage loss with fuzzy-logic contribution and above node new coordinate is determined by genetic algorithm. As fuzzy-logic will be so effective if more than one factor influence on decision making and also genetic algorithms perform well in dynamic problems so our proposed solution results in fast, optimized and reliable outpu

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Towards optimal sensor deployment for location tracking in smart home

    Get PDF
    International audienceAmbient Assisted Living (AAL) aims to ease the daily living and working environmentfor disabled/elderly peopleat home. AAL use information and communication technology based on sensors data. These sensors are generally placed randomly without taking into account the layout of buildings and rooms. In this paper, we develop a mathematical model foroptimal sensor placement in order (i) to optimize the sensor number with regard to room features, (ii) to ensure a reliability level in sensor networkconsidering a sensor failure rate. This placement ensures the targettracking in smart home sinceoptimizing sensorplacement allow us to distinguish different zonesand consequently, to identify the target location, according to the activated sensors

    Time Efficient Unmanned Aircraft Systems Deployment in Disaster Scenarios Using Clustering Methods and a Set Cover Approach

    Get PDF
    Unmanned aircraft, which are more commonly known as drones, are nowadays extensively used in an ever increasing set of applications. In a wider system, the aircraft are usually associated to additional elements such as ground-based controllers. Furthermore, when these components form a network of elements that can communicate, the system is said to form an Unmanned Aircraft System (UAS). This system is particularly effective when the aircraft within are organized into swarms with sets of objectives to accomplish. The extensive use of swarms into UASs is more and more exploited nowadays due to the decreasing cost of those aircraft. In the present work we are interested in a particular application of UASs, namely their deployment in disaster scenarios for communications services provision to targets on the ground. These ground targets, however, are not part of the UASs and should not be confused with ground-based controllers. The present work does not only focus on coverage for ground targets but also on a guaranteed minimum number of covers for each target, which is called the redundancy requirement. The research work also ensures that the deployed UAS forms a unique connected component so that a steady stream of communication is kept with the targets to cover. Research work similar to the present perform the initial deployment of their aircraft in a different manner, either randomly, based on a predetermined grid formation, or using other elaborated methods. This work proposes a new solution based on the use of clustering algorithms, combined to a design of the problem formulated as a set cover optimization model. The clustering phase is used to discretize the search space and ease the optimization phase by locating regions of interest, and then a further procedure is applied, only when needed, to reconnect scattered connected components and guarantee connectivity in the networks. This way of doing it has achieved a deployment of UASs with maximum coverage for all targets, a guaranteed minimum number of covers for each of them, and results in a competitive computation time. The latter also allowed for more scalability by extending the tests to very large input instances
    • …
    corecore