197 research outputs found

    Properties of stochastic Kronecker graphs

    Full text link
    The stochastic Kronecker graph model introduced by Leskovec et al. is a random graph with vertex set Z2n\mathbb Z_2^n, where two vertices uu and vv are connected with probability αu⋅vγ(1−u)⋅(1−v)βn−u⋅v−(1−u)⋅(1−v)\alpha^{{u}\cdot{v}}\gamma^{(1-{u})\cdot(1-{v})}\beta^{n-{u}\cdot{v}-(1-{u})\cdot(1-{v})} independently of the presence or absence of any other edge, for fixed parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. They have shown empirically that the degree sequence resembles a power law degree distribution. In this paper we show that the stochastic Kronecker graph a.a.s. does not feature a power law degree distribution for any parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. In addition, we analyze the number of subgraphs present in the stochastic Kronecker graph and study the typical neighborhood of any given vertex.Comment: 37 pages, 2 figure

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference
    • …
    corecore