6,942 research outputs found

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Connectivity in Sub-Poisson Networks

    Get PDF
    We consider a class of point processes (pp), which we call {\em sub-Poisson}; these are pp that can be directionally-convexly (dcxdcx) dominated by some Poisson pp. The dcxdcx order has already been shown useful in comparing various point process characteristics, including Ripley's and correlation functions as well as shot-noise fields generated by pp, indicating in particular that smaller in the dcxdcx order processes exhibit more regularity (less clustering, less voids) in the repartition of their points. Using these results, in this paper we study the impact of the dcxdcx ordering of pp on the properties of two continuum percolation models, which have been proposed in the literature to address macroscopic connectivity properties of large wireless networks. As the first main result of this paper, we extend the classical result on the existence of phase transition in the percolation of the Gilbert's graph (called also the Boolean model), generated by a homogeneous Poisson pp, to the class of homogeneous sub-Poisson pp. We also extend a recent result of the same nature for the SINR graph, to sub-Poisson pp. Finally, as examples we show that the so-called perturbed lattices are sub-Poisson. More generally, perturbed lattices provide some spectrum of models that ranges from periodic grids, usually considered in cellular network context, to Poisson ad-hoc networks, and to various more clustered pp including some doubly stochastic Poisson ones.Comment: 8 pages, 10 figures, to appear in Proc. of Allerton 2010. For an extended version see http://hal.inria.fr/inria-00497707 version

    Connectivity of confined 3D Networks with Anisotropically Radiating Nodes

    Get PDF
    Nodes in ad hoc networks with randomly oriented directional antenna patterns typically have fewer short links and more long links which can bridge together otherwise isolated subnetworks. This network feature is known to improve overall connectivity in 2D random networks operating at low channel path loss. To this end, we advance recently established results to obtain analytic expressions for the mean degree of 3D networks for simple but practical anisotropic gain profiles, including those of patch, dipole and end-fire array antennas. Our analysis reveals that for homogeneous systems (i.e. neglecting boundary effects) directional radiation patterns are superior to the isotropic case only when the path loss exponent is less than the spatial dimension. Moreover, we establish that ad hoc networks utilizing directional transmit and isotropic receive antennas (or vice versa) are always sub-optimally connected regardless of the environment path loss. We extend our analysis to investigate boundary effects in inhomogeneous systems, and study the geometrical reasons why directional radiating nodes are at a disadvantage to isotropic ones. Finally, we discuss multi-directional gain patterns consisting of many equally spaced lobes which could be used to mitigate boundary effects and improve overall network connectivity.Comment: 12 pages, 10 figure

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Quantifying Link Stability in Ad Hoc Wireless Networks Subject to Ornstein-Uhlenbeck Mobility

    Full text link
    The performance of mobile ad hoc networks in general and that of the routing algorithm, in particular, can be heavily affected by the intrinsic dynamic nature of the underlying topology. In this paper, we build a new analytical/numerical framework that characterizes nodes' mobility and the evolution of links between them. This formulation is based on a stationary Markov chain representation of link connectivity. The existence of a link between two nodes depends on their distance, which is governed by the mobility model. In our analysis, nodes move randomly according to an Ornstein-Uhlenbeck process using one tuning parameter to obtain different levels of randomness in the mobility pattern. Finally, we propose an entropy-rate-based metric that quantifies link uncertainty and evaluates its stability. Numerical results show that the proposed approach can accurately reflect the random mobility in the network and fully captures the link dynamics. It may thus be considered a valuable performance metric for the evaluation of the link stability and connectivity in these networks.Comment: 6 pages, 4 figures, Submitted to IEEE International Conference on Communications 201

    Infocast: A New Paradigm for Collaborative Content Distribution from Roadside Units to Vehicular Networks Using Rateless Codes

    Full text link
    In this paper, we address the problem of distributing a large amount of bulk data to a sparse vehicular network from roadside infostations, using efficient vehicle-to-vehicle collaboration. Due to the highly dynamic nature of the underlying vehicular network topology, we depart from architectures requiring centralized coordination, reliable MAC scheduling, or global network state knowledge, and instead adopt a distributed paradigm with simple protocols. In other words, we investigate the problem of reliable dissemination from multiple sources when each node in the network shares a limited amount of its resources for cooperating with others. By using \emph{rateless} coding at the Road Side Unit (RSU) and using vehicles as data carriers, we describe an efficient way to achieve reliable dissemination to all nodes (even disconnected clusters in the network). In the nutshell, we explore vehicles as mobile storage devices. We then develop a method to keep the density of the rateless codes packets as a function of distance from the RSU at the desired level set for the target decoding distance. We investigate various tradeoffs involving buffer size, maximum capacity, and the mobility parameter of the vehicles
    • …
    corecore