47,650 research outputs found

    Function and form in networks of interacting agents

    Full text link
    The main problem we address in this paper is whether function determines form when a society of agents organizes itself for some purpose or whether the organizing method is more important than the functionality in determining the structure of the ensemble. As an example, we use a neural network that learns the same function by two different learning methods. For sufficiently large networks, very different structures may indeed be obtained for the same functionality. Clustering, characteristic path length and hierarchy are structural differences, which in turn have implications on the robustness and adaptability of the networks. In networks, as opposed to simple graphs, the connections between the agents are not necessarily symmetric and may have positive or negative signs. New characteristic coefficients are introduced to characterize this richer connectivity structure.Comment: 27 pages Latex, 11 figure

    Rainbow Hamilton cycles in random regular graphs

    Full text link
    A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n tends to infinity, provided d is at least 8.Comment: 16 page

    Evolving Social Networks via Friend Recommendations

    Full text link
    A social network grows over a period of time with the formation of new connections and relations. In recent years we have witnessed a massive growth of online social networks like Facebook, Twitter etc. So it has become a problem of extreme importance to know the destiny of these networks. Thus predicting the evolution of a social network is a question of extreme importance. A good model for evolution of a social network can help in understanding the properties responsible for the changes occurring in a network structure. In this paper we propose such a model for evolution of social networks. We model the social network as an undirected graph where nodes represent people and edges represent the friendship between them. We define the evolution process as a set of rules which resembles very closely to how a social network grows in real life. We simulate the evolution process and show, how starting from an initial network, a network evolves using this model. We also discuss how our model can be used to model various complex social networks other than online social networks like political networks, various organizations etc..Comment: 5 pages, 8 figures, 2 algorithm

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks
    • …
    corecore