161 research outputs found

    Learning in Multi-Agent Information Systems - A Survey from IS Perspective

    Get PDF
    Multiagent systems (MAS), long studied in artificial intelligence, have recently become popular in mainstream IS research. This resurgence in MAS research can be attributed to two phenomena: the spread of concurrent and distributed computing with the advent of the web; and a deeper integration of computing into organizations and the lives of people, which has led to increasing collaborations among large collections of interacting people and large groups of interacting machines. However, it is next to impossible to correctly and completely specify these systems a priori, especially in complex environments. The only feasible way of coping with this problem is to endow the agents with learning, i.e., an ability to improve their individual and/or system performance with time. Learning in MAS has therefore become one of the important areas of research within MAS. In this paper we present a survey of important contributions made by IS researchers to the field of learning in MAS, and present directions for future research in this area

    Design and Simulation Analysis of Deep Learning Based Approaches and Multi-Attribute Algorithms for Warehouse Task Selection

    Get PDF
    With the growth and adoption of global supply chains and internet technologies, warehouse operations have become more demanding. Particularly, the number of orders being processed over a given time frame is drastically increasing, leading to more work content. This makes operational tasks, such as material retrieval and storage, done manually more inefficient. To improve system-level warehouse efficiency, collaborating Autonomous Vehicles (AVs) are needed. Several design challenges encompass an AV, some critical aspects are navigation, path planning, obstacle avoidance, task selection decisions, communication, and control systems. The current study addresses the warehouse task selection problem given a dynamic pending task list and considering multiple attributes: distance, traffic, collaboration, and due date, using situational decision-making approaches. The study includes the design and analysis of two situational decision-making approaches for multi-attribute dynamic warehouse task selection: Deep Learning Approach for Multi-Attribute Task Selection (DLT) and Situation based Greedy (SGY) algorithm that uses a traditional algorithmic approach. The two approaches are designed and analyzed in the current work. Further, they are evaluated using a simulation-based experiment. The results show that both the DLT and SGY have potential and are effective in comparison to the earliest due date first and shortest travel distance-based rules in addressing the multi-attribute task selection needs of a warehouse operation under the given experimental conditions and trade-offs

    Applications and implementation of neuro-connectionist architectures.

    Get PDF
    by H.S. Ng.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 91-97).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- Neuro-connectionist Network --- p.2Chapter 2 --- Related Works --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.1.1 --- Kruskal's Algorithm --- p.5Chapter 2.1.2 --- Prim's algorithm --- p.6Chapter 2.1.3 --- Sollin's algorithm --- p.7Chapter 2.1.4 --- Bellman-Ford algorithm --- p.8Chapter 2.1.5 --- Floyd-Warshall algorithm --- p.9Chapter 3 --- Binary Relation Inference Network and Path Problems --- p.11Chapter 3.1 --- Introduction --- p.11Chapter 3.2 --- Topology --- p.12Chapter 3.3 --- Network structure --- p.13Chapter 3.3.1 --- Single-destination BRIN architecture --- p.14Chapter 3.3.2 --- Comparison between all-pair BRIN and single-destination BRIN --- p.18Chapter 3.4 --- Path Problems and BRIN Solution --- p.18Chapter 3.4.1 --- Minimax path problems --- p.18Chapter 3.4.2 --- BRIN solution --- p.19Chapter 4 --- Analog and Voltage-mode Approach --- p.22Chapter 4.1 --- Introduction --- p.22Chapter 4.2 --- Analog implementation --- p.24Chapter 4.3 --- Voltage-mode approach --- p.26Chapter 4.3.1 --- The site function --- p.26Chapter 4.3.2 --- The unit function --- p.28Chapter 4.3.3 --- The computational unit --- p.28Chapter 4.4 --- Conclusion --- p.29Chapter 5 --- Current-mode Approach --- p.32Chapter 5.1 --- Introduction --- p.32Chapter 5.2 --- Current-mode approach for analog VLSI Implementation --- p.33Chapter 5.2.1 --- Site and Unit output function --- p.33Chapter 5.2.2 --- Computational unit --- p.34Chapter 5.2.3 --- A complete network --- p.35Chapter 5.3 --- Conclusion --- p.37Chapter 6 --- Neural Network Compensation for Optimization Circuit --- p.40Chapter 6.1 --- Introduction --- p.40Chapter 6.2 --- A Neuro-connectionist Architecture for error correction --- p.41Chapter 6.2.1 --- Linear Relationship --- p.42Chapter 6.2.2 --- Output Deviation of Computational Unit --- p.44Chapter 6.3 --- Experimental Results --- p.46Chapter 6.3.1 --- Training Phase --- p.46Chapter 6.3.2 --- Generalization Phase --- p.48Chapter 6.4 --- Conclusion --- p.50Chapter 7 --- Precision-limited Analog Neural Network Compensation --- p.51Chapter 7.1 --- Introduction --- p.51Chapter 7.2 --- Analog Neural Network hardware --- p.53Chapter 7.3 --- Integration of analog neural network compensation of connectionist net- work for general path problems --- p.54Chapter 7.4 --- Experimental Results --- p.55Chapter 7.4.1 --- Convergence time --- p.56Chapter 7.4.2 --- The accuracy of the system --- p.57Chapter 7.5 --- Conclusion --- p.58Chapter 8 --- Transitive Closure Problems --- p.60Chapter 8.1 --- Introduction --- p.60Chapter 8.2 --- Different ways of implementation of BRIN for transitive closure --- p.61Chapter 8.2.1 --- Digital Implementation --- p.61Chapter 8.2.2 --- Analog Implementation --- p.61Chapter 8.3 --- Transitive Closure Problem --- p.63Chapter 8.3.1 --- A special case of maximum spanning tree problem --- p.64Chapter 8.3.2 --- Analog approach solution for transitive closure problem --- p.65Chapter 8.3.3 --- Current-mode approach solution for transitive closure problem --- p.67Chapter 8.4 --- Comparisons between the different forms of implementation of BRIN for transitive closure --- p.71Chapter 8.4.1 --- Convergence Time --- p.71Chapter 8.4.2 --- Circuit complexity --- p.72Chapter 8.5 --- Discussion --- p.73Chapter 9 --- Critical path problems --- p.74Chapter 9.1 --- Introduction --- p.74Chapter 9.2 --- Problem statement and single-destination BRIN solution --- p.75Chapter 9.3 --- Analog implementation --- p.76Chapter 9.3.1 --- Separated building block --- p.78Chapter 9.3.2 --- Combined building block --- p.79Chapter 9.4 --- Current-mode approach --- p.80Chapter 9.4.1 --- "Site function, unit output function and a completed network" --- p.80Chapter 9.5 --- Conclusion --- p.83Chapter 10 --- Conclusions --- p.85Chapter 10.1 --- Summary of Achievements --- p.85Chapter 10.2 --- Future development --- p.88Chapter 10.2.1 --- Application for financial problems --- p.88Chapter 10.2.2 --- Fabrication of VLSI Implementation --- p.88Chapter 10.2.3 --- Actual prototyping of Analog Integrated Circuits for critical path and transitive closure problems --- p.89Chapter 10.2.4 --- Other implementation platform --- p.89Chapter 10.2.5 --- On-line update of routing table inside the router for network com- munication using BRIN --- p.89Chapter 10.2.6 --- Other BRIN's applications --- p.90Bibliography --- p.9

    Applications and implementation of neuro-connectionist architectures.

    Get PDF
    by H.S. Ng.Thesis (M.Phil.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 91-97).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Introduction --- p.1Chapter 1.2 --- Neuro-connectionist Network --- p.2Chapter 2 --- Related Works --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.1.1 --- Kruskal's Algorithm --- p.5Chapter 2.1.2 --- Prim's algorithm --- p.6Chapter 2.1.3 --- Sollin's algorithm --- p.7Chapter 2.1.4 --- Bellman-Ford algorithm --- p.8Chapter 2.1.5 --- Floyd-Warshall algorithm --- p.9Chapter 3 --- Binary Relation Inference Network and Path Problems --- p.11Chapter 3.1 --- Introduction --- p.11Chapter 3.2 --- Topology --- p.12Chapter 3.3 --- Network structure --- p.13Chapter 3.3.1 --- Single-destination BRIN architecture --- p.14Chapter 3.3.2 --- Comparison between all-pair BRIN and single-destination BRIN --- p.18Chapter 3.4 --- Path Problems and BRIN Solution --- p.18Chapter 3.4.1 --- Minimax path problems --- p.18Chapter 3.4.2 --- BRIN solution --- p.19Chapter 4 --- Analog and Voltage-mode Approach --- p.22Chapter 4.1 --- Introduction --- p.22Chapter 4.2 --- Analog implementation --- p.24Chapter 4.3 --- Voltage-mode approach --- p.26Chapter 4.3.1 --- The site function --- p.26Chapter 4.3.2 --- The unit function --- p.28Chapter 4.3.3 --- The computational unit --- p.28Chapter 4.4 --- Conclusion --- p.29Chapter 5 --- Current-mode Approach --- p.32Chapter 5.1 --- Introduction --- p.32Chapter 5.2 --- Current-mode approach for analog VLSI Implementation --- p.33Chapter 5.2.1 --- Site and Unit output function --- p.33Chapter 5.2.2 --- Computational unit --- p.34Chapter 5.2.3 --- A complete network --- p.35Chapter 5.3 --- Conclusion --- p.37Chapter 6 --- Neural Network Compensation for Optimization Circuit --- p.40Chapter 6.1 --- Introduction --- p.40Chapter 6.2 --- A Neuro-connectionist Architecture for error correction --- p.41Chapter 6.2.1 --- Linear Relationship --- p.42Chapter 6.2.2 --- Output Deviation of Computational Unit --- p.44Chapter 6.3 --- Experimental Results --- p.46Chapter 6.3.1 --- Training Phase --- p.46Chapter 6.3.2 --- Generalization Phase --- p.48Chapter 6.4 --- Conclusion --- p.50Chapter 7 --- Precision-limited Analog Neural Network Compensation --- p.51Chapter 7.1 --- Introduction --- p.51Chapter 7.2 --- Analog Neural Network hardware --- p.53Chapter 7.3 --- Integration of analog neural network compensation of connectionist net- work for general path problems --- p.54Chapter 7.4 --- Experimental Results --- p.55Chapter 7.4.1 --- Convergence time --- p.56Chapter 7.4.2 --- The accuracy of the system --- p.57Chapter 7.5 --- Conclusion --- p.58Chapter 8 --- Transitive Closure Problems --- p.60Chapter 8.1 --- Introduction --- p.60Chapter 8.2 --- Different ways of implementation of BRIN for transitive closure --- p.61Chapter 8.2.1 --- Digital Implementation --- p.61Chapter 8.2.2 --- Analog Implementation --- p.61Chapter 8.3 --- Transitive Closure Problem --- p.63Chapter 8.3.1 --- A special case of maximum spanning tree problem --- p.64Chapter 8.3.2 --- Analog approach solution for transitive closure problem --- p.65Chapter 8.3.3 --- Current-mode approach solution for transitive closure problem --- p.67Chapter 8.4 --- Comparisons between the different forms of implementation of BRIN for transitive closure --- p.71Chapter 8.4.1 --- Convergence Time --- p.71Chapter 8.4.2 --- Circuit complexity --- p.72Chapter 8.5 --- Discussion --- p.73Chapter 9 --- Critical path problems --- p.74Chapter 9.1 --- Introduction --- p.74Chapter 9.2 --- Problem statement and single-destination BRIN solution --- p.75Chapter 9.3 --- Analog implementation --- p.76Chapter 9.3.1 --- Separated building block --- p.78Chapter 9.3.2 --- Combined building block --- p.79Chapter 9.4 --- Current-mode approach --- p.80Chapter 9.4.1 --- "Site function, unit output function and a completed network" --- p.80Chapter 9.5 --- Conclusion --- p.83Chapter 10 --- Conclusions --- p.85Chapter 10.1 --- Summary of Achievements --- p.85Chapter 10.2 --- Future development --- p.88Chapter 10.2.1 --- Application for financial problems --- p.88Chapter 10.2.2 --- Fabrication of VLSI Implementation --- p.88Chapter 10.2.3 --- Actual prototyping of Analog Integrated Circuits for critical path and transitive closure problems --- p.89Chapter 10.2.4 --- Other implementation platform --- p.89Chapter 10.2.5 --- On-line update of routing table inside the router for network com- munication using BRIN --- p.89Chapter 10.2.6 --- Other BRIN's applications --- p.90Bibliography --- p.9

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    • …
    corecore