8,195 research outputs found

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples

    Canonical formulas for k-potent commutative, integral, residuated lattices

    Full text link
    Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Actually, they provide a uniform and semantic way to axiomatise all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for kk-potent, commutative, integral, residuated lattices (kk-CIRL\mathsf{CIRL}). We show that any subvariety of kk-CIRL\mathsf{CIRL} is axiomatised by canonical formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde

    Semiring and semimodule issues in MV-algebras

    Full text link
    In this paper we propose a semiring-theoretic approach to MV-algebras based on the connection between such algebras and idempotent semirings - such an approach naturally imposing the introduction and study of a suitable corresponding class of semimodules, called MV-semimodules. We present several results addressed toward a semiring theory for MV-algebras. In particular we show a representation of MV-algebras as a subsemiring of the endomorphism semiring of a semilattice, the construction of the Grothendieck group of a semiring and its functorial nature, and the effect of Mundici categorical equivalence between MV-algebras and lattice-ordered Abelian groups with a distinguished strong order unit upon the relationship between MV-semimodules and semimodules over idempotent semifields.Comment: This version contains some corrections to some results at the end of Section

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange

    Mermin Non-Locality in Abstract Process Theories

    Full text link
    The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates) is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N) family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y), opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page
    • …
    corecore