4,328 research outputs found

    Gather-and-broadcast frequency control in power systems

    Full text link
    We propose a novel frequency control approach in between centralized and distributed architectures, that is a continuous-time feedback control version of the dual decomposition optimization method. Specifically, a convex combination of the frequency measurements is centrally aggregated, followed by an integral control and a broadcast signal, which is then optimally allocated at local generation units. We show that our gather-and-broadcast control architecture comprises many previously proposed strategies as special cases. We prove local asymptotic stability of the closed-loop equilibria of the considered power system model, which is a nonlinear differential-algebraic system that includes traditional generators, frequency-responsive devices, as well as passive loads, where the sources are already equipped with primary droop control. Our feedback control is designed such that the closed-loop equilibria of the power system solve the optimal economic dispatch problem

    Stabilization of structure-preserving power networks with market dynamics

    Get PDF
    This paper studies the problem of maximizing the social welfare while stabilizing both the physical power network as well as the market dynamics. For the physical power grid a third-order structure-preserving model is considered involving both frequency and voltage dynamics. By applying the primal-dual gradient method to the social welfare problem, a distributed dynamic pricing algorithm in port-Hamiltonian form is obtained. After interconnection with the physical system a closed-loop port-Hamiltonian system of differential-algebraic equations is obtained, whose properties are exploited to prove local asymptotic stability of the optimal points.Comment: IFAC World Congress 2017, accepted, 6 page

    Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs

    Get PDF
    Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed-averaging-based integral control in theory and simulations
    • …
    corecore