1,204 research outputs found

    SGAN: An Alternative Training of Generative Adversarial Networks

    Full text link
    The Generative Adversarial Networks (GANs) have demonstrated impressive performance for data synthesis, and are now used in a wide range of computer vision tasks. In spite of this success, they gained a reputation for being difficult to train, what results in a time-consuming and human-involved development process to use them. We consider an alternative training process, named SGAN, in which several adversarial "local" pairs of networks are trained independently so that a "global" supervising pair of networks can be trained against them. The goal is to train the global pair with the corresponding ensemble opponent for improved performances in terms of mode coverage. This approach aims at increasing the chances that learning will not stop for the global pair, preventing both to be trapped in an unsatisfactory local minimum, or to face oscillations often observed in practice. To guarantee the latter, the global pair never affects the local ones. The rules of SGAN training are thus as follows: the global generator and discriminator are trained using the local discriminators and generators, respectively, whereas the local networks are trained with their fixed local opponent. Experimental results on both toy and real-world problems demonstrate that this approach outperforms standard training in terms of better mitigating mode collapse, stability while converging and that it surprisingly, increases the convergence speed as well

    DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs

    Full text link
    A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.Comment: IJCAI 202

    AC-SUM-GAN: Connecting Actor-Critic and Generative Adversarial Networks for Unsupervised Video Summarization

    Get PDF
    This paper presents a new method for unsupervised video summarization. The proposed architecture embeds an Actor-Critic model into a Generative Adversarial Network and formulates the selection of important video fragments (that will be used to form the summary) as a sequence generation task. The Actor and the Critic take part in a game that incrementally leads to the selection of the video key-fragments, and their choices at each step of the game result in a set of rewards from the Discriminator. The designed training workflow allows the Actor and Critic to discover a space of actions and automatically learn a policy for key-fragment selection. Moreover, the introduced criterion for choosing the best model after the training ends, enables the automatic selection of proper values for parameters of the training process that are not learned from the data (such as the regularization factor σ). Experimental evaluation on two benchmark datasets (SumMe and TVSum) demonstrates that the proposed AC-SUM-GAN model performs consistently well and gives SoA results in comparison to unsupervised methods, that are also competitive with respect to supervised methods
    • …
    corecore