61 research outputs found

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Simultaneous Deployment and Tracking Multi-Robot Strategies with Connectivity Maintenance

    Get PDF
    Multi robot teams composed by ground and aerial vehicles have gained attention during the last years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper we propose two Lloyd-based tracking strategies to allow the ground robots (agents) follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a Minimum Spanning Tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments

    Graph rigidity-based formation control of planar multi-agent systems

    Get PDF
    A multi-agent system is a network of interacting agents that collectively perform a complex task. This dissertation is concerned with the decentralized formation control of multi-agent systems moving in the plane. The formation problem is defined as designing control inputs for the agents so that they form and maintain a pre-defined, planar geometric shape. The focus is on three related problems with increasing level of complexity: formation acquisition, formation maneuvering, and target interception. Three different dynamic models, also with increasing level of complexity, are considered for the motion of the agents: the single-integrator model, the double-integrator model, and the full mechanical dynamic model. Rigid graph theory and Lyapunov theory are the primary tools utilized in this work for solving the aforementioned formation problems for the three models. The backstepping control technique also plays a key role in the cases of the double-integrator and full dynamic models. Starting with the single-integrator model, a basic formation acquisition controller is proposed that is only a function of the relative position of agents in an infinitesimally and minimally rigid graph. A Lyapunov analysis shows that the origin of the inter-agent distance error system is exponentially stable. It is then shown how an extra term can be added to the controller to enable formation maneuvering or target interception. The three controllers for the single-integrator model are used as a stepping stone and extended to the double-integrator model with the aid of backstepping. Finally, an actuator-level, formation acquisition control law is developed for multiple robotic vehicles that accounts for the vehicle dynamics. Specifically, a class of underactuated vehicles modeled by Euler-Lagrange-like equations is considered. The backstepping technique is again employed while exploiting the structural properties of the system dynamics. Computer simulations are provided throughout the dissertation to show the proposed control laws in action

    Formation Control of Multiple Agents with Preserving Connectivity and its Application to Gradient Climbing

    Get PDF
    A design of cooperative controllers that force a group of N mobile agents with limited communication ranges to perform a desired formation is presented. The proposed formation control system also preserves initial communication connectivity and guarantees no collisions between the agents. The formation control design is based on smooth step functions, potential functions, and the Lyapunov direct method. The proposed formation control system is applied to solve a gradient climbing problem where the gradient average of a distributed field is estimated over a bounded region using the field measurement by the agents
    • …
    corecore