180,720 research outputs found

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    Ethical and Social Aspects of Self-Driving Cars

    Full text link
    As an envisaged future of transportation, self-driving cars are being discussed from various perspectives, including social, economical, engineering, computer science, design, and ethics. On the one hand, self-driving cars present new engineering problems that are being gradually successfully solved. On the other hand, social and ethical problems are typically being presented in the form of an idealized unsolvable decision-making problem, the so-called trolley problem, which is grossly misleading. We argue that an applied engineering ethical approach for the development of new technology is what is needed; the approach should be applied, meaning that it should focus on the analysis of complex real-world engineering problems. Software plays a crucial role for the control of self-driving cars; therefore, software engineering solutions should seriously handle ethical and social considerations. In this paper we take a closer look at the regulative instruments, standards, design, and implementations of components, systems, and services and we present practical social and ethical challenges that have to be met, as well as novel expectations for software engineering.Comment: 11 pages, 3 figures, 2 table

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times
    corecore