22,601 research outputs found

    Connected Domination Critical Graphs

    Get PDF
    This thesis investigates the structure of connected domination critical graphs. The characterizations developed provide an important theoretical framework for addressing a number of difficult computational problems in the areas of operations research (for example, facility locations, industrial production systems), security, communication and wireless networks, transportation and logistics networks, land surveying and computational biology. In these application areas, the problems of interest are modelled by networks and graph parameters such as domination numbers reflect the efficiency and performance of the systems

    Connected majority domination vertex critical graphs

    Get PDF
    In this article, how the removal of a single vertex from a graph G can change the Connected Majority Domination number is surveyed for any graph G. A graph is Connected Domination Critical if the removal of any vertex decreases or increases its Connected Majority Domination Number. This paper gives examples and properties of CMD vertex critical graphs. There are two types namely CVR and UVR with respect to CMD sets of a graph. Also the vertex classification. V⁰CM(G), V ⁻CM(G) and V⁺CM are studied, characterisation theorems of these vertex classification are determined

    A constructive characterization of total domination vertex critical graphs

    Get PDF
    AbstractLet G be a graph of order n and maximum degree Δ(G) and let γt(G) denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G−v is less than the total domination number of G. We call these graphs γt-critical. For any γt-critical graph G, it can be shown that n≤Δ(G)(γt(G)−1)+1. In this paper, we prove that: Let G be a connected γt-critical graph of order n (n≥3), then n=Δ(G)(γt(G)−1)+1 if and only if G is regular and, for each v∈V(G), there is an A⊆V(G)−{v} such that N(v)∩A=0̸, the subgraph induced by A is 1-regular, and every vertex in V(G)−A−{v} has exactly one neighbor in A

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if N[v]S2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge eEe \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if GSG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page
    corecore