175 research outputs found

    Connected Tropical Subgraphs in Vertex-Colored Graphs

    Get PDF
    International audienceA subgraph of a vertex-colored graph is said to be tropical whenever it contains each color of the graph. In this work we study the problem of finding a minimal connected tropical subgraph. We first show that this problem is NP-Hard for trees, interval graphs and split graphs, but polynomial when the number of colors is logarithmic in terms of the order of the graph (i.e. FPT). We then provide upper bounds for the order of the minimal connected tropical subgraph under various conditions. We finally study the problem of finding a connected tropical subgraph in a randomly vertex-colored random graph

    Moduli spaces of colored graphs

    Full text link
    We introduce moduli spaces of colored graphs, defined as spaces of non-degenerate metrics on certain families of edge-colored graphs. Apart from fixing the rank and number of legs these families are determined by various conditions on the coloring of their graphs. The motivation for this is to study Feynman integrals in quantum field theory using the combinatorial structure of these moduli spaces. Here a family of graphs is specified by the allowed Feynman diagrams in a particular quantum field theory such as (massive) scalar fields or quantum electrodynamics. The resulting spaces are cell complexes with a rich and interesting combinatorial structure. We treat some examples in detail and discuss their topological properties, connectivity and homology groups

    Flag arrangements and triangulations of products of simplices

    Full text link
    We investigate the line arrangement that results from intersecting d complete flags in C^n. We give a combinatorial description of the matroid T_{n,d} that keeps track of the linear dependence relations among these lines. We prove that the bases of the matroid T_{n,3} characterize the triangles with holes which can be tiled with unit rhombi. More generally, we provide evidence for a conjectural connection between the matroid T_{n,d}, the triangulations of the product of simplices Delta_{n-1} x \Delta_{d-1}, and the arrangements of d tropical hyperplanes in tropical (n-1)-space. Our work provides a simple and effective criterion to ensure the vanishing of many Schubert structure constants in the flag manifold, and a new perspective on Billey and Vakil's method for computing the non-vanishing ones.Comment: 39 pages, 12 figures, best viewed in colo

    Graph complexes and Feynman rules

    Full text link
    We investigate Feynman graphs and their Feynman rules from the viewpoint of graph complexes. We focus on graph homology and on the appearance of cubical complexes when either reducing internal edges or when removing them by putting them on the massshell.Comment: 47 p, 13 Figure

    Cambrian triangulations and their tropical realizations

    Full text link
    This paper develops a Cambrian extension of the work of C. Ceballos, A. Padrol and C. Sarmiento on ν\nu-Tamari lattices and their tropical realizations. For any signature ε{±}n\varepsilon \in \{\pm\}^n, we consider a family of ε\varepsilon-trees in bijection with the triangulations of the ε\varepsilon-polygon. These ε\varepsilon-trees define a flag regular triangulation Tε\mathcal{T}^\varepsilon of the subpolytope conv{(ei,ej)0i<jn+1}\operatorname{conv} \{(\mathbf{e}_{i_\bullet}, \mathbf{e}_{j_\circ}) \, | \, 0 \le i_\bullet < j_\circ \le n+1 \} of the product of simplices {0,,n}×{1,,(n+1)}\triangle_{\{0_\bullet, \dots, n_\bullet\}} \times \triangle_{\{1_\circ, \dots, (n+1)_\circ\}}. The oriented dual graph of the triangulation Tε\mathcal{T}^\varepsilon is the Hasse diagram of the (type AA) ε\varepsilon-Cambrian lattice of N. Reading. For any I{0,,n}I_\bullet \subseteq \{0_\bullet, \dots, n_\bullet\} and J{1,,(n+1)}J_\circ \subseteq \{1_\circ, \dots, (n+1)_\circ\}, we consider the restriction TI,Jε\mathcal{T}^\varepsilon_{I_\bullet, J_\circ} of the triangulation Tε\mathcal{T}^\varepsilon to the face I×J\triangle_{I_\bullet} \times \triangle_{J_\circ}. Its dual graph is naturally interpreted as the increasing flip graph on certain (ε,I,J)(\varepsilon, I_\bullet, J_\circ)-trees, which is shown to be a lattice generalizing in particular the ν\nu-Tamari lattices in the Cambrian setting. Finally, we present an alternative geometric realization of TI,Jε\mathcal{T}^\varepsilon_{I_\bullet, J_\circ} as a polyhedral complex induced by a tropical hyperplane arrangement.Comment: 16 pages, 11 figure
    corecore