2,750 research outputs found

    A new security architecture for SIP based P2P computer networks

    Get PDF
    Many applications are transferred from C/S (Client/Server) mode to P2P (Peer-to-Peer) mode such as VoIP (Voice over IP). This paper presents a new security architecture, i.e. a trustworthy authentication algorithm of peers, for Session Initialize Protocol (SIP) based P2P computer networks. A mechanism for node authentication using a cryptographic primitive called one-way accumulator is proposed to secure the P2P SIP computer networks. It leverages the distributed nature of P2P to allow for distributed resource discovery and rendezvous in a SIP network, thus eliminating (or at least reducing) the need for centralized servers. The distributed node authentication algorithm is established for the P2P SIP computer networks. The corresponding protocol has been implemented in our P2P SIP experiment platform successfully. The performance study has verified the proposed distributed node authentication algorithm for SIP based P2P computer networks

    A personal distributed environment for future mobile systems

    Get PDF
    A Personal Distributed Environment (PDE) embraces a user-centric view of communications that take place against a backdrop of multiple user devices, each with its distinct capabilities, in physically separate locations. This paper provides an overview of a Personal Distributed Environment and some of the research issues related to the implementation of the PDE concept that are being considered in the current Mobile VCE work programme

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    Interworking Architectures in Heterogeneous Wireless Networks: An Algorithmic Overview

    Get PDF
    The scarce availability of spectrum and the proliferation of smartphones, social networking applications, online gaming etc., mobile network operators (MNOs) are faced with an exponential growth in packet switched data requirements on their networks. Haven invested in legacy systems (such as HSPA, WCDMA, WiMAX, Cdma2000, LTE, etc.) that have hitherto withstood the current and imminent data usage demand, future and projected usage surpass the capabilities of the evolution of these individual technologies. Hence, a more critical, cost-effective and flexible approach to provide ubiquitous coverage for the user using available spectrum is of high demand. Heterogeneous Networks make use of these legacy systems by allowing users to connect to the best network available and most importantly seamlessly handover active sessions amidst them. This paper presents a survey of interworking architectures between IMT 2000 candidate networks that employ the use of IEFT protocols such as MIP, mSCTP, HIP, MOBIKE, IKEV2 and SIP etc. to bring about this much needed capacity

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    A lightweight privacy preserving authenticated key agreement protocol for SIP-based VoIP

    Get PDF
    Session Initiation Protocol (SIP) is an essential part of most Voice over Internet Protocol (VoIP) architecture. Although SIP provides attractive features, it is exposed to various security threats, and so an efficient and secure authentication scheme is sought to enhance the security of SIP. Several attempts have been made to address the tradeoff problem between security and efficiency, but designing a successful authenticated key agreement protocol for SIP is still a challenging task from the viewpoint of both performance and security, because performance and security as two critical factors affecting SIP applications always seem contradictory. In this study, we employ biometrics to design a lightweight privacy preserving authentication protocol for SIP based on symmetric encryption, achieving a delicate balance between performance and security. In addition, the proposed authentication protocol can fully protect the privacy of biometric characteristics and data identity, which has not been considered in previous work. The completeness of the proposed protocol is demonstrated by Gong, Needham, and Yahalom (GNY) logic. Performance analysis shows that our proposed protocol increases efficiency significantly in comparison with other related protocols

    An energy efficient authenticated key agreement protocol for SIP-based green VoIP networks

    Get PDF
    Voice over Internet Protocol (VoIP) is spreading across the market rapidly due to its characteristics such as low cost, flexibility implementation, and versatility of new applications etc. However, the voice packets transmitted over the Internet are not protected in most VoIP environments, and then the user’s information could be easily compromised by various malicious attacks. So an energy-efficient authenticated key agreement protocol for Session Initial Protocol (SIP) should be provided to ensure the confidentiality and integrity of data communications over VoIP networks. To simplify the authentication process, several protocols adopt a verification table to achieve mutual authentication, but the protocols require the SIP server to maintain a large verification table which not only increases energy consumption but also leads to some security issues. Although several attempts have been made to address the intractable problems, designing an energy-efficient authenticated key agreement protocol for SIP-based green VoIP networks is still a challenging task. In this study, we propose an efficient authentication protocol for SIP by using smartcards based on elliptic curve cryptography. With the proposed protocol, the SIP server needs not to store a password or verification table in its database, and so no energy is required for the maintenance of the verification table. Security analysis demonstrates that the proposed protocol can resist various attacks and provides efficient password updating. Furthermore, the experimental results show that the proposed protocol increases efficiency in comparison with other related protocols
    corecore