75 research outputs found

    Computer Aided Diagnosis - Medical Image Analysis Techniques

    Get PDF
    Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties

    Real-Time Automatic Linear Feature Detection in Images

    Get PDF
    Linear feature detection in digital images is an important low-level operation in computer vision that has many applications. In remote sensing tasks, it can be used to extract roads, railroads, and rivers from satellite or low-resolution aerial images, which can be used for the capture or update of data for geographic information and navigation systems. In addition, it is useful in medical imaging for the extraction of blood vessels from an X-ray angiography or the bones in the skull from a CT or MR image. It also can be applied in horticulture for underground plant root detection in minirhizotron images. In this dissertation, a fast and automatic algorithm for linear feature extraction from images is presented. Under the assumption that linear feature is a sequence of contiguous pixels where the image intensity is locally maximal in the direction of the gradient, linear features are extracted as non-overlapping connected line segments consisting of these contiguous pixels. To perform this task, point process is used to model line segments network in images. Specific properties of line segments in an image are described by an intensity energy model. Aligned segments are favored while superposition is penalized. These constraints are enforced by an interaction energy model. Linear features are extracted from the line segments network by minimizing a modified Candy model energy function using a greedy algorithm whose parameters are determined in a data-driven manner. Experimental results from a collection of different types of linear features (underground plant roots, blood vessels and urban roads) in images demonstrate the effectiveness of the approach

    Defect and thickness inspection system for cast thin films using machine vision and full-field transmission densitometry

    Get PDF
    Quick mass production of homogeneous thin film material is required in paper, plastic, fabric, and thin film industries. Due to the high feed rates and small thicknesses, machine vision and other nondestructive evaluation techniques are used to ensure consistent, defect-free material by continuously assessing post-production quality. One of the fastest growing inspection areas is for 0.5-500 micrometer thick thin films, which are used for semiconductor wafers, amorphous photovoltaics, optical films, plastics, and organic and inorganic membranes. As a demonstration application, a prototype roll-feed imaging system has been designed to inspect high-temperature polymer electrolyte membrane (PEM), used for fuel cells, after being die cast onto a moving transparent substrate. The inspection system continuously detects thin film defects and classifies them with a neural network into categories of holes, bubbles, thinning, and gels, with a 1.2% false alarm rate, 7.1% escape rate, and classification accuracy of 96.1%. In slot die casting processes, defect types are indicative of a misbalance in the mass flow rate and web speed; so, based on the classified defects, the inspection system informs the operator of corrective adjustments to these manufacturing parameters. Thickness uniformity is also critical to membrane functionality, so a real-time, full-field transmission densitometer has been created to measure the bi-directional thickness profile of the semi-transparent PEM between 25-400 micrometers. The local thickness of the 75 mm x 100 mm imaged area is determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient is determined to be 1.4 D/mm and the average thickness error is found to be 4.7%. Finally, the defect inspection and thickness profilometry systems are compiled into a specially-designed graphical user interface for intuitive real-time operation and visualization.M.S.Committee Chair: Tequila Harris; Committee Member: Levent Degertekin; Committee Member: Wayne Dale

    Accurate Image Analysis of the Retina Using Hessian Matrix and Binarisation of Thresholded Entropy with Application of Texture Mapping

    Get PDF
    In this paper, we demonstrate a comprehensive method for segmenting the retinal vasculature in camera images of the fundus. This is of interest in the area of diagnostics for eye diseases that affect the blood vessels in the eye. In a departure from other state-of-the-art methods, vessels are first pre-grouped together with graph partitioning, using a spectral clustering technique based on morphological features. Local curvature is estimated over the whole image using eigenvalues of Hessian matrix in order to enhance the vessels, which appear as ridges in images of the retina. The result is combined with a binarized image, obtained using a threshold that maximizes entropy, to extract the retinal vessels from the background. Speckle type noise is reduced by applying a connectivity constraint on the extracted curvature based enhanced image. This constraint is varied over the image according to each region's predominant blood vessel size. The resultant image exhibits the central light reflex of retinal arteries and veins, which prevents the segmentation of whole vessels. To address this, the earlier entropy-based binarization technique is repeated on the original image, but crucially, with a different threshold to incorporate the central reflex vessels. The final segmentation is achieved by combining the segmented vessels with and without central light reflex. We carry out our approach on DRIVE and REVIEW, two publicly available collections of retinal images for research purposes. The obtained results are compared with state-of-the-art methods in the literature using metrics such as sensitivity (true positive rate), selectivity (false positive rate) and accuracy rates for the DRIVE images and measured vessel widths for the REVIEW images. Our approach out-performs the methods in the literature.Xiaoxia Yin, Brian W-H Ng, Jing He, Yanchun Zhang, Derek Abbot
    • …
    corecore