208,847 research outputs found

    On the One dimensional Poisson Random Geometric Graph

    Full text link
    Given a Poisson process on a bounded interval, its random geometric graph is the graph whose vertices are the points of the Poisson process and edges exist between two points if and only if their distance is less than a fixed given threshold. We compute explicitly the distribution of the number of connected components of this graph. The proof relies on inverting some Laplace transforms

    Components of domino tilings under flips in quadriculated cylinder and torus

    Full text link
    In a region RR consisting of unit squares, a domino is the union of two adjacent squares and a (domino) tiling is a collection of dominoes with disjoint interior whose union is the region. The flip graph T(R)\mathcal{T}(R) is defined on the set of all tilings of RR such that two tilings are adjacent if we change one to another by a flip (a 90∘90^{\circ} rotation of a pair of side-by-side dominoes). It is well-known that T(R)\mathcal{T}(R) is connected when RR is simply connected. By using graph theoretical approach, we show that the flip graph of 2m×(2n+1)2m\times(2n+1) quadriculated cylinder is still connected, but the flip graph of 2m×(2n+1)2m\times(2n+1) quadriculated torus is disconnected and consists of exactly two isomorphic components. For a tiling tt, we associate an integer f(t)f(t), forcing number, as the minimum number of dominoes in tt that is contained in no other tilings. As an application, we obtain that the forcing numbers of all tilings in 2m×(2n+1)2m\times (2n+1) quadriculated cylinder and torus form respectively an integer interval whose maximum value is (n+1)m(n+1)m

    Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs *

    Get PDF
    Abstract Given two graphs G and H as input, the Induced Subgraph Isomorphism (ISI) problem is to decide whether G has an induced subgraph that is isomorphic to H. This problem is NP-complete already when G and H are restricted to disjoint unions of paths, and consequently also NP-complete on proper interval graphs and on bipartite permutation graphs. We show that ISI can be solved in polynomial time on proper interval graphs and on bipartite permutation graphs, provided that H is connected. As a consequence, we obtain that ISI is fixed-parameter tractable on these two graph classes, when parametrised by the number of connected components of H. Our results contrast and complement the following known results: W [1]-hardness of ISI on interval graphs when parametrised by the number of vertices of H, NP-completeness of ISI on connected interval graphs and on connected permutation graphs, and NP-completeness of Subgraph Isomorphism on connected proper interval graphs and connected bipartite permutation graphs
    • …
    corecore