1,102 research outputs found

    Conjugate Phase MRI Reconstruction With Spatially Variant Sample Density Correction

    Full text link
    A new image reconstruction method to correct for the effects of magnetic field inhomogeneity in non-Cartesian sampled magnetic resonance imaging (MRI) is proposed. The conjugate phase reconstruction method, which corrects for phase accumulation due to applied gradients and magnetic field inhomogeneity, has been commonly used for this case. This can lead to incomplete correction, in part, due to the presence of gradients in the field inhomogeneity function. Based on local distortions to the k-space trajectory from these gradients, a spatially variant sample density compensation function is introduced as part of the conjugate phase reconstruction. This method was applied to both simulated and experimental spiral imaging data and shown to produce more accurate image reconstructions. Two approaches for fast implementation that allow the use of fast Fourier transforms are also described. The proposed method is shown to produce fast and accurate image reconstructions for spiral sampled MRI.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85978/1/Fessler52.pd

    Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities

    Full text link
    In magnetic resonance imaging, magnetic field inhomogeneities cause distortions in images that are reconstructed by conventional fast Fourier transform (FFT) methods. Several noniterative image reconstruction methods are used currently to compensate for field inhomogeneities, but these methods assume that the field map that characterizes the off-resonance frequencies is spatially smooth. Recently, iterative methods have been proposed that can circumvent this assumption and provide improved compensation for off-resonance effects. However, straightforward implementations of such iterative methods suffer from inconveniently long computation times. This paper describes a tool for accelerating iterative reconstruction of field-corrected MR images: a novel time-segmented approximation to the MR signal equation. We use a min-max formulation to derive the temporal interpolator. Speedups of around 60 were achieved by combining this temporal interpolator with a nonuniform fast Fourier transform with normalized root mean squared approximation errors of 0.07%. The proposed method provides fast, accurate, field-corrected image reconstruction even when the field map is not smooth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86010/1/Fessler69.pd

    Fast joint reconstruction of dynamic R2∗R_2^* and field maps in functional MRI.

    Full text link
    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is conventionally done by reconstructing T2 * -weighted images. However, since the images are unitless they are nonquantifiable in terms of important physiological parameters. An alternative approach is to reconstruct R2 * maps which are quantifiable and have comparable BOLD contrast as T2* -weighted images. However, conventional R2 * mapping involves long readouts and ignores relaxation during readout. Another problem with fMRI imaging is temporal drift/fluctuations in off-resonance. Conventionally, a field map is collected at the start of the fMRI study to correct for off-resonance, ignoring any temporal changes. Here, we propose a new fast regularized iterative algorithm that jointly reconstructs R2 * and field maps for all time frames in fMRI data. To accelerate the algorithm we linearize the MR signal model, enabling the use of fast regularized iterative reconstruction methods. The regularizer was designed to account for the different resolution properties of both R2 * and field maps and provide uniform spatial resolution. For fMRI data with the same temporal frame rate as data collected for T2 * -weighted imaging the resulting R2 * maps performed comparably to T2 * -weighted images in activation detection while also correcting for spatially global and local temporal changes in off-resonance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86002/1/Fessler23.pd

    Toeplitz-Based Iterative Image Reconstruction for MRI With Correction for Magnetic Field Inhomogeneity

    Full text link
    In some types of magnetic resonance (MR) imaging, particularly functional brain scans, the conventional Fourier model for the measurements is inaccurate. Magnetic field inhomogeneities, which are caused by imperfect main fields and by magnetic susceptibility variations, induce distortions in images that are reconstructed by conventional Fourier methods. These artifacts hamper the use of functional MR imaging (fMRI) in brain regions near air/tissue interfaces. Recently, iterative methods that combine the conjugate gradient (CG) algorithm with nonuniform FFT (NUFFT) operations have been shown to provide considerably improved image quality relative to the conjugate-phase method. However, for non-Cartesian k-space trajectories, each CG-NUFFT iteration requires numerous k-space interpolations; these are operations that are computationally expensive and poorly suited to fast hardware implementations. This paper proposes a faster iterative approach to field-corrected MR image reconstruction based on the CG algorithm and certain Toeplitz matrices. This CG-Toeplitz approach requires k-space interpolations only for the initial iteration; thereafter, only fast Fourier transforms (FFTs) are required. Simulation results show that the proposed CG-Toeplitz approach produces equivalent image quality as the CG-NUFFT method with significantly reduced computation time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85903/1/Fessler50.pd

    Accelerating MRI Data Acquisition Using Parallel Imaging and Compressed Sensing

    Get PDF
    Magnetic Resonance Imaging (MRI) scanners are one of important medical instruments, which can achieve more information of soft issues in human body than other medical instruments, such as Ultrasound, Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), etc. But MRI\u27s scanning is slow for patience of doctors and patients. In this dissertation, the author proposes some methods of parallel imaging and compressed sensing to accelerate MRI data acquisition. Firstly, a method is proposed to improve the conventional GRAPPA using cross-sampled auto-calibration data. This method use cross-sampled auto-calibration data instead of the conventional parallel-sampled auto-calibration data to estimate the linear kernel model of the conventional GRAPPA. The simulations and experiments show that the cross-sampled GRAPPA can decrease the quantity of ACS lines and reduce the aliasing artifacts comparing to the conventional GRAPPA under same reduction factors. Secondly, a Hybrid encoding method is proposed to accelerate the MRI data acquisition using compressed sensing. This method completely changes the conventional Fourier encoding into Hybrid encoding, which combines the benefits of Fourier and Circulant random encoding, under 2D and 3D situation, through the proposed special hybrid encoding pulse sequences. The simulations and experiments illustrate that the images can be reconstructed by the proposed Hybrid encoding method to reserve more details and resolutions than the conventional Fourier encoding method. Thirdly, a pseudo 2D random sampling method is proposed by dynamically swapping the gradients of x and y axes on pulse sequences, which can be implemented physically as the convention 1D random sampling method. The simulations show that the proposed method can reserve more details than the convention 1D random sampling method. These methods can recover images to achieve better qualities under same situations than the conventional methods. Using these methods, the MRI data acquisitions can be accelerated comparing to the conventional methods

    Accelerated Imaging Techniques for Chemical Shift Magnetic Resonance Imaging

    Get PDF
    Chemical shift imaging is a method for the separation two or more chemical species. The cost of chemical shift encoding is increased acquisition time as multiple acquisitions are acquired at different echo times. Image acceleration techniques, typically parallel imaging, are often used to improve the spatial coverage and resolution. This thesis describes a new technique for estimating the signal to noise ratio for parallel imaging reconstructions and proposes new image reconstructions for accelerated chemical shift imaging using compressed sensing and/or parallel imaging for two applications: water-fat separation and metabolic imaging of hyperpolarized [1-13C] pyruvate. Spatially varying noise in parallel imaging reconstructions makes measurements of the signal to noise ratio, a commonly used metric for image for image quality, difficult. Existing approaches have limitations such as they are not applicable to all reconstructions, require significant computation time, or rely on repeated image acquisitions. A SNR estimation technique is proposed that does not exhibit these limitations. Water-fat imaging of highly undersampled datasets from the liver, calf, knee, and abdominal cavity are demonstrated using a customized IDEAL-SPGR pulse sequence and an integrated compressed sensing, parallel imaging, water-fat reconstruction. This method is shown to offer comparable image quality relative to fully sampled reference images for a range of acceleration factors. At high acceleration factors, this technique is shown to offer improved image quality when compared to the current standard of parallel imaging. Accelerated chemical shift imaging was demonstrated for metabolic of hyperpolarized [1-13C] pyruvate. Pyruvate, lactate, alanine, and bicarbonate images were reconstructed from undersampled datasets. Phantoms were used to validate this technique while retrospectively and prospectively accelerated 3D in vivo datasets were used to demonstrate. Alternatively, acceleration was also achieved through the use of a high performance magnetic field gradient set. This thesis addresses the inherently slow acquisition times of chemical shift imaging by examining the role compressed sensing and parallel imaging can be play in chemical shift imaging. An approach to SNR assessment for parallel imaging reconstruction is proposed and approaches to accelerated chemical shift imaging are described for applications in water-fat imaging and metabolic imaging of hyperpolarized [1-13C] pyruvate

    Rapid 3D Phase Contrast Magnetic Resonance Angiography through High-Moment Velocity Encoding and 3D Parallel Imaging

    Get PDF
    abstract: Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints.Dissertation/ThesisPh.D. Bioengineering 201

    Iterative RF pulse design for multidimensional, small-tip-angle selective excitation

    Full text link
    The excitation k -space perspective on small-tip-angle selective excitation has facilitated RF pulse designs in a range of MR applications. In this paper, k -space-based design of multidimensional RF pulses is formulated as a quadratic optimization problem, and solved efficiently by the iterative conjugate-gradient (CG) algorithm. Compared to conventional design approaches, such as the conjugate-phase (CP) method, the new design approach is beneficial in several regards. It generally produces more accurate excitation patterns. The improvement is particularly significant when k -space is undersampled, and it can potentially shorten pulse lengths. A prominent improvement in accuracy is also observed when large off-resonance gradients are present. A further boost in excitation accuracy can be accomplished in regions of interest (ROIs) if they are specified together with “don't-care” regions. The density compensation function (DCF) is no longer required. In addition, regularization techniques allow control over integrated and peak pulse power. Magn Reson Med, 2005. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48766/1/20631_ftp.pd
    • 

    corecore